References and Notes
1a
Hickel A.
Hasslacher M.
Griengl H.
Physiol. Plant.
1996,
98:
891
1b
Wajant H.
Effenberger F.
Biol. Chem.
1996,
377:
611
2a
Synthesis and Applications of Non-Racemic Cyanohydrins and α-Amino Acids, In Tetrahedron Symposia-in-Print, North, M., Ed. Tetrahedron
2004,
60:
10371
2b
Brunel J.-M.
Holmes IP.
Angew. Chem. Int. Ed.
2004,
116:
2810
2c
North M.
Tetrahedron: Asymmetry
2003,
14:
147
2d
Vachal P.
Jacobsen EN. In Comprehensive Asymmetric Catalysis
Suppl. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
2004.
p.117-129
2e
Gregory RJH.
Chem Rev.
1999,
99:
3649
2f
North M.
Synlett
1993,
807
2g
Effenberger F.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1555
3a
García Ruano JL.
Martín Castro AM.
Rodríguez JH.
J. Org. Chem.
1992,
57:
7235
3b
Deng H.
Ister MP.
Snapper ML.
Hoveyda HA.
Angew. Chem. Int. Ed.
2002,
41:
1009
3c
Krueger CA.
Kuntz KW.
Dzierba CD.
Wirschun WD.
Gleason JD.
Snapper ML.
Hoveyda HA.
J. Am. Chem. Soc.
1999,
121:
4284
3d
Sigman MS.
Jacobsen EN.
J. Am. Chem. Soc.
1998,
120:
5315
3e
Kim SS.
Rajagopal G.
Song DH.
J. Organomet. Chem.
2004,
689:
1734
3f
Tian SK.
Hong R.
Deng L.
J. Am. Chem. Soc.
2003,
125:
9900
3g
Hayashi M.
Miyamoto Y.
Inoue S.
Oguni N.
J. Org. Chem.
1993,
58:
1515
3h
Casas J.
Baeza A.
Nájera C.
Sansano JM.
Saá JM.
Eur. J. Org. Chem.
2006,
1949
3i
Baeza A.
Nájera C.
Sansano JM.
Eur. J. Org. Chem.
2007,
1101
4a
van Langen LM.
Selassa RP.
van Rantwijk F.
Sheldon RA.
Org. Lett.
2005,
7:
327
4b
Griengl H.
Klempier N.
Pöchlauer P.
Schmidt M.
Shi N.
Zabelinskaja-Mackova AA.
Tetrahedron
1998,
54:
14477
4c
Effenberger F.
Ziegler T.
Förster S.
Angew. Chem., Int. Ed. Engl.
1987,
26:
458
4d
Effenberger F.
Gutterer B.
Ziegler T.
Eckhardt E.
Aichholz R.
Liebigs Ann. Chem.
1991,
47:
54
4e
Santaniello E.
Ferraboschi P.
Grisenti P.
Manzocchi A.
Chem. Rev.
1992,
92:
1071
4f
Liu X.
Qin B.
Zhou X.
He B.
Feng X.
J. Am. Chem. Soc.
2005,
127:
12224
4g
Ooi T.
Miura T.
Takaya K.
Ichikawa H.
Maruoka K.
Tetrahedron
2001,
57:
867
5
Soorukram D.
Knochel P.
Angew. Chem. Int. Ed.
2006,
45:
3686
6a
Calaza MI.
Hupe E.
Knochel P.
Org. Lett.
2003,
5:
1059
6b
Harrington-Frost N.
Leuser H.
Calaza MI.
Kneisel FF.
Knochel P.
Org. Lett.
2003,
5:
2111
6c
Soorukram D.
Knochel P.
Org. Lett.
2004,
6:
2409
For other examples of this type, see:
7a
Demel P.
Keller M.
Breit B.
Chem. Eur. J.
2006,
12:
6669
7b
Demel P.
Keller M.
Breit B.
Chem. Eur. J.
2006,
12:
6684
7c
Breit B.
Demel P.
Adv. Synth. Catal.
2001,
343:
429
7d
Breit B.
Demel P.
Tetrahedron
2000,
56:
2833
7e
Breit B.
Chem. Eur. J.
2000,
6:
1519
7f
Breit B.
Demel P.
Studte C.
Angew. Chem. Int. Ed.
2004,
43:
3785
7g
Herber C.
Breit B.
Angew. Chem. Int. Ed.
2005,
44:
5267
7h
Breit B.
Herber C.
Angew. Chem. Int. Ed.
2004,
43:
3790
7i
Breit B.
Angew. Chem. Int. Ed.
1998,
37:
525
7j
Smitrovich JH.
Woerpel KA.
J. Org. Chem.
2000,
65:
1601
7k
Spino C.
Beaulieu C.
Lafreniere J.
J. Org. Chem.
2002,
65:
7091
7l
Belelie JL.
Chong JM.
J. Org. Chem.
2001,
66:
5552
7m
Ibuka T.
Habashita H.
Otaka A.
Fujii N.
Oguchi Y.
Uyehara T.
Yamamoto Y.
J. Org. Chem.
1991,
56:
4370
7n
Yamamoto Y.
Tanaka M.
Ibuka T.
Chounan Y.
J. Org. Chem.
1992,
57:
1024
7o
Marino JP.
Viso A.
Lee J.-D.
Fernandez de la Pradilla R.
Fernandez P.
Rubio MB.
J. Org. Chem.
1997,
62:
645
For copper-catalyzed reactions using chiral ligands, see:
8a
van Klaveren M.
Persson ESM.
del Villar A.
Grove DM.
Bäckvall J.-E.
van Koten G.
Tetrahedron Lett.
1995,
36:
3059
8b
Karlström ASE.
Huerta FF.
Meuzelaar GJ.
Bäckvall J.-E.
Synlett
2001,
923
8c
Meuzelaar GJ.
Karlström ASE.
van Klaveren M.
Persson ESM.
del Villar A.
van Koten G.
Bäckvall J.-E.
Tetrahedron
2000,
56:
2895
8d
Dübner F.
Knochel P.
Angew. Chem. Int. Ed.
1999,
38:
379
8e
Dübner F.
Knochel P.
Tetrahedron Lett.
2000,
41:
9233
8f
Alexakis A.
Malan C.
Lea L.
Benhaim C.
Fournioux X.
Synlett
2001,
927
8g
Alexakis A.
Croset K.
Org. Lett.
2002,
4:
4147
8h
Tissot-Croset K.
Polet D.
Alexakis A.
Angew. Chem. Int. Ed.
2004,
43:
2426
8i
Tissot-Croset K.
Alexakis A.
Tetrahedron Lett.
2004,
45:
7375
8j
Falciola C.
Tissot-Croset K.
Alexakis A.
Angew. Chem. Int. Ed.
2006,
45:
5995
8k
Alexakis A.
Tomassini A.
Andrey O.
Bernardinelli G.
Eur. J. Org. Chem.
2005,
1332
8l
Polet D.
Alexakis A.
Org. Lett.
2005,
7:
1621
9
Klempier N.
Pichler U.
Griengl H.
Tetrahedron: Asymmetry
1995,
6:
845
10 The stereochemistry of the double bond was confirmed by 2D 1H NMR spectroscopy.
11
Typical Procedure for the S
N
2′ Substitution: Preparation of (2
S
,
E
)-2-(2-Methyl-2-pentylcyclopentylidene)aceto-nitrile (2d)
A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was charged with CuCN·2LiCl solution (2.6 mL, 1.0 M in THF, 2.64 mmol, 1.2 equiv), anhyd NMP (2.6 mL, overall ratio of solvents THF-NMP = 2:1). The mixture was cooled at -30 °C. To this solution was added dropwise dipentylzinc solution (1.1 mL, 4.8 M in THF, 5.28 mmol, 2.4 equiv). The resulting mixture was stirred at -30 °C for 45 min, and then (2S)-cyano(2-methylcyclopent-1-enyl)methyl 2,6-difluorobenzoate (1b, 610 mg, 2.2 mmol, 90% ee) was added dropwise as a solution in THF (1.5 mL). The reaction mixture was stirred at -30 °C to 0 °C for 2 h and sat. aq NH4Cl solution (5 mL) was added. The quenched reaction mixture was poured into 25% aq NH3 (2 mL), aq sat. NH4Cl (100 mL) and Et2O (100 mL) and stirred at 25 °C until the copper salts had dissolved then extracted with Et2O (3 × 100 mL). The combined extracts were washed with H2O, brine and dried over Mg2SO4. Evaporation of the solvents and purification by column chromatography (silica gel, pentane-Et2O, 9:1) afforded the unsaturated nitrile 2d (382 mg, 2.0 mmol, 91%, 90% ee) as a pale yellow oil.
1H NMR (300 MHz, CDCl3): δ = 5.02 (t, 3
J = 2.55 Hz, 1 H), 2.81-2.56 (m, 2 H), 1.78-1.66 (m, 2 H), 1.66-1.53 (m, 2 H), 1.34-1.16 (m, 8 H), 1.04 (s, 3 H), 0.87 (t, 3
J = 6.75 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 181.9, 117.9, 89.9, 47.6, 40.4, 38.9, 34.0, 32.6, 26.1, 24.4, 22.7, 22.1, 14.3. MS (EI, 70 eV): m/z (%) = 191 (8) [M+], 176 (11), 162 (8), 148 (12), 121 (89), 120 (100), 106 (12), 93 (23), 79 (25). HRMS: m/z calcd: 191.1674; found: 191.1651. [α]D
20 -15.9 (c 1.49, CHCl3). GC (Chirasil-Dex CB), 100 °C (5 min), ramp of 2 °C/min to 140 °C; t
R(min) = 23.45 (R), 23.93 (S).
(2
R
,
E
)-(-2-Methyl-2-phenethylcyclopentylidene)aceto-nitrile (2h)
1H NMR (400 MHz, CDCl3): δ = 7.31-7.14 (m, 5 H), 5.09 (t, 3
J = 2.55 Hz, 1 H), 2.91-2.46 (m, 4 H), 1.88-1.58 (m, 6 H), 1.14 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 181.4, 142.2, 128.7, 128.4, 126.2, 117.8, 90.3, 47.7, 42.5, 38.9, 34.0, 31.3, 26.1, 22.2. MS (EI, 70 eV): m/z (%) = 225, 121 (16), 134 (9), 105 (100), 104 (63), 91 (64), 79 (18), 77 (18), 65 (15). HRMS: m/z calculated: 225.1517; found: 225.1487. [α]D
20 -5.8 (c 0.69, CHCl3). GC (Chirasil-Dex CB), 100 °C (5 min), ramp of 2 °C/min to 160 °C; t
R
(min) = 49.21 (R), 50.24 (S).
{4a-Methyl-hexahydro-cyclopenta[
b
]pyran-7a-yl}aceto-nitrile (8b)
1H NMR (300 MHz, CDCl3): δ = 3.81-3.74 (m, 1 H), 3.53-3.43 (m, 1 H), 2.85 (d, 2
J = 16.8 Hz, 1 H), 2.35 (d, 2
J = 16.8 Hz, 1 H), 2.19-2.00 (m, 2 H), 1.94-1.58 (m, 5 H), 1.45-1.17 (m, 3 H), 0.85 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 117.8, 82.8, 61.8, 42.5, 36.5, 34.8, 30.2, 25.5, 21.3, 20.8, 18.9. MS (EI, 70 eV): m/z (%) = 180, 162 (2), 150 (2), 139 (100), 111 (15), 93 (15), 81 (12), 68 (36). HRMS: m/z calcd: 180.1388; found: 180.1390.