Subscribe to RSS
DOI: 10.1055/s-2007-973881
Chiral Allylic Cyanohydrins as Versatile Substrates for Diastereoselective Copper(I)-mediated SN2′ Allylic Substitutions
Publication History
Publication Date:
13 April 2007 (online)
Abstract
2,6-Difluorobenzoated derivatives bearing a protected cyanohydrin function undergo highly stereoselective copper(I)-mediated SN2′ allylic substitution reactions with diorganozinc reagents leading to chiral unsaturated nitriles.
Key words
asymmetric synthesis - allylic substitution - cyanohydrins - copper - zinc - unsaturated nitriles
-
1a
Hickel A.Hasslacher M.Griengl H. Physiol. Plant. 1996, 98: 891 -
1b
Wajant H.Effenberger F. Biol. Chem. 1996, 377: 611 - 2a Synthesis and Applications of Non-Racemic Cyanohydrins and α-Amino Acids, In Tetrahedron Symposia-in-Print, North, M., Ed. Tetrahedron 2004, 60: 10371
-
2b
Brunel J.-M.Holmes IP. Angew. Chem. Int. Ed. 2004, 116: 2810 -
2c
North M. Tetrahedron: Asymmetry 2003, 14: 147 -
2d
Vachal P.Jacobsen EN. In Comprehensive Asymmetric Catalysis Suppl. 1:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 2004. p.117-129 -
2e
Gregory RJH. Chem Rev. 1999, 99: 3649 -
2f
North M. Synlett 1993, 807 -
2g
Effenberger F. Angew. Chem., Int. Ed. Engl. 1994, 33: 1555 -
3a
García Ruano JL.Martín Castro AM.Rodríguez JH. J. Org. Chem. 1992, 57: 7235 -
3b
Deng H.Ister MP.Snapper ML.Hoveyda HA. Angew. Chem. Int. Ed. 2002, 41: 1009 -
3c
Krueger CA.Kuntz KW.Dzierba CD.Wirschun WD.Gleason JD.Snapper ML.Hoveyda HA. J. Am. Chem. Soc. 1999, 121: 4284 -
3d
Sigman MS.Jacobsen EN. J. Am. Chem. Soc. 1998, 120: 5315 -
3e
Kim SS.Rajagopal G.Song DH. J. Organomet. Chem. 2004, 689: 1734 -
3f
Tian SK.Hong R.Deng L. J. Am. Chem. Soc. 2003, 125: 9900 -
3g
Hayashi M.Miyamoto Y.Inoue S.Oguni N. J. Org. Chem. 1993, 58: 1515 -
3h
Casas J.Baeza A.Nájera C.Sansano JM.Saá JM. Eur. J. Org. Chem. 2006, 1949 -
3i
Baeza A.Nájera C.Sansano JM. Eur. J. Org. Chem. 2007, 1101 -
4a
van Langen LM.Selassa RP.van Rantwijk F.Sheldon RA. Org. Lett. 2005, 7: 327 -
4b
Griengl H.Klempier N.Pöchlauer P.Schmidt M.Shi N.Zabelinskaja-Mackova AA. Tetrahedron 1998, 54: 14477 -
4c
Effenberger F.Ziegler T.Förster S. Angew. Chem., Int. Ed. Engl. 1987, 26: 458 -
4d
Effenberger F.Gutterer B.Ziegler T.Eckhardt E.Aichholz R. Liebigs Ann. Chem. 1991, 47: 54 -
4e
Santaniello E.Ferraboschi P.Grisenti P.Manzocchi A. Chem. Rev. 1992, 92: 1071 -
4f
Liu X.Qin B.Zhou X.He B.Feng X. J. Am. Chem. Soc. 2005, 127: 12224 -
4g
Ooi T.Miura T.Takaya K.Ichikawa H.Maruoka K. Tetrahedron 2001, 57: 867 - 5
Soorukram D.Knochel P. Angew. Chem. Int. Ed. 2006, 45: 3686 -
6a
Calaza MI.Hupe E.Knochel P. Org. Lett. 2003, 5: 1059 -
6b
Harrington-Frost N.Leuser H.Calaza MI.Kneisel FF.Knochel P. Org. Lett. 2003, 5: 2111 -
6c
Soorukram D.Knochel P. Org. Lett. 2004, 6: 2409 - For other examples of this type, see:
-
7a
Demel P.Keller M.Breit B. Chem. Eur. J. 2006, 12: 6669 -
7b
Demel P.Keller M.Breit B. Chem. Eur. J. 2006, 12: 6684 -
7c
Breit B.Demel P. Adv. Synth. Catal. 2001, 343: 429 -
7d
Breit B.Demel P. Tetrahedron 2000, 56: 2833 -
7e
Breit B. Chem. Eur. J. 2000, 6: 1519 -
7f
Breit B.Demel P.Studte C. Angew. Chem. Int. Ed. 2004, 43: 3785 -
7g
Herber C.Breit B. Angew. Chem. Int. Ed. 2005, 44: 5267 -
7h
Breit B.Herber C. Angew. Chem. Int. Ed. 2004, 43: 3790 -
7i
Breit B. Angew. Chem. Int. Ed. 1998, 37: 525 -
7j
Smitrovich JH.Woerpel KA. J. Org. Chem. 2000, 65: 1601 -
7k
Spino C.Beaulieu C.Lafreniere J. J. Org. Chem. 2002, 65: 7091 -
7l
Belelie JL.Chong JM. J. Org. Chem. 2001, 66: 5552 -
7m
Ibuka T.Habashita H.Otaka A.Fujii N.Oguchi Y.Uyehara T.Yamamoto Y. J. Org. Chem. 1991, 56: 4370 -
7n
Yamamoto Y.Tanaka M.Ibuka T.Chounan Y. J. Org. Chem. 1992, 57: 1024 -
7o
Marino JP.Viso A.Lee J.-D.Fernandez de la Pradilla R.Fernandez P.Rubio MB. J. Org. Chem. 1997, 62: 645 - For copper-catalyzed reactions using chiral ligands, see:
-
8a
van Klaveren M.Persson ESM.del Villar A.Grove DM.Bäckvall J.-E.van Koten G. Tetrahedron Lett. 1995, 36: 3059 -
8b
Karlström ASE.Huerta FF.Meuzelaar GJ.Bäckvall J.-E. Synlett 2001, 923 -
8c
Meuzelaar GJ.Karlström ASE.van Klaveren M.Persson ESM.del Villar A.van Koten G.Bäckvall J.-E. Tetrahedron 2000, 56: 2895 -
8d
Dübner F.Knochel P. Angew. Chem. Int. Ed. 1999, 38: 379 -
8e
Dübner F.Knochel P. Tetrahedron Lett. 2000, 41: 9233 -
8f
Alexakis A.Malan C.Lea L.Benhaim C.Fournioux X. Synlett 2001, 927 -
8g
Alexakis A.Croset K. Org. Lett. 2002, 4: 4147 -
8h
Tissot-Croset K.Polet D.Alexakis A. Angew. Chem. Int. Ed. 2004, 43: 2426 -
8i
Tissot-Croset K.Alexakis A. Tetrahedron Lett. 2004, 45: 7375 -
8j
Falciola C.Tissot-Croset K.Alexakis A. Angew. Chem. Int. Ed. 2006, 45: 5995 -
8k
Alexakis A.Tomassini A.Andrey O.Bernardinelli G. Eur. J. Org. Chem. 2005, 1332 -
8l
Polet D.Alexakis A. Org. Lett. 2005, 7: 1621 - 9
Klempier N.Pichler U.Griengl H. Tetrahedron: Asymmetry 1995, 6: 845
References and Notes
The stereochemistry of the double bond was confirmed by 2D 1H NMR spectroscopy.
11
Typical Procedure for the S
N
2′ Substitution: Preparation of (2
S
,
E
)-2-(2-Methyl-2-pentylcyclopentylidene)aceto-nitrile (2d)
A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was charged with CuCN·2LiCl solution (2.6 mL, 1.0 M in THF, 2.64 mmol, 1.2 equiv), anhyd NMP (2.6 mL, overall ratio of solvents THF-NMP = 2:1). The mixture was cooled at -30 °C. To this solution was added dropwise dipentylzinc solution (1.1 mL, 4.8 M in THF, 5.28 mmol, 2.4 equiv). The resulting mixture was stirred at -30 °C for 45 min, and then (2S)-cyano(2-methylcyclopent-1-enyl)methyl 2,6-difluorobenzoate (1b, 610 mg, 2.2 mmol, 90% ee) was added dropwise as a solution in THF (1.5 mL). The reaction mixture was stirred at -30 °C to 0 °C for 2 h and sat. aq NH4Cl solution (5 mL) was added. The quenched reaction mixture was poured into 25% aq NH3 (2 mL), aq sat. NH4Cl (100 mL) and Et2O (100 mL) and stirred at 25 °C until the copper salts had dissolved then extracted with Et2O (3 × 100 mL). The combined extracts were washed with H2O, brine and dried over Mg2SO4. Evaporation of the solvents and purification by column chromatography (silica gel, pentane-Et2O, 9:1) afforded the unsaturated nitrile 2d (382 mg, 2.0 mmol, 91%, 90% ee) as a pale yellow oil.
1H NMR (300 MHz, CDCl3): δ = 5.02 (t, 3
J = 2.55 Hz, 1 H), 2.81-2.56 (m, 2 H), 1.78-1.66 (m, 2 H), 1.66-1.53 (m, 2 H), 1.34-1.16 (m, 8 H), 1.04 (s, 3 H), 0.87 (t, 3
J = 6.75 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 181.9, 117.9, 89.9, 47.6, 40.4, 38.9, 34.0, 32.6, 26.1, 24.4, 22.7, 22.1, 14.3. MS (EI, 70 eV): m/z (%) = 191 (8) [M+], 176 (11), 162 (8), 148 (12), 121 (89), 120 (100), 106 (12), 93 (23), 79 (25). HRMS: m/z calcd: 191.1674; found: 191.1651. [α]D
20 -15.9 (c 1.49, CHCl3). GC (Chirasil-Dex CB), 100 °C (5 min), ramp of 2 °C/min to 140 °C; t
R(min) = 23.45 (R), 23.93 (S).
(2
R
,
E
)-(-2-Methyl-2-phenethylcyclopentylidene)aceto-nitrile (2h)
1H NMR (400 MHz, CDCl3): δ = 7.31-7.14 (m, 5 H), 5.09 (t, 3
J = 2.55 Hz, 1 H), 2.91-2.46 (m, 4 H), 1.88-1.58 (m, 6 H), 1.14 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 181.4, 142.2, 128.7, 128.4, 126.2, 117.8, 90.3, 47.7, 42.5, 38.9, 34.0, 31.3, 26.1, 22.2. MS (EI, 70 eV): m/z (%) = 225, 121 (16), 134 (9), 105 (100), 104 (63), 91 (64), 79 (18), 77 (18), 65 (15). HRMS: m/z calculated: 225.1517; found: 225.1487. [α]D
20 -5.8 (c 0.69, CHCl3). GC (Chirasil-Dex CB), 100 °C (5 min), ramp of 2 °C/min to 160 °C; t
R
(min) = 49.21 (R), 50.24 (S).
{4a-Methyl-hexahydro-cyclopenta[
b
]pyran-7a-yl}aceto-nitrile (8b)
1H NMR (300 MHz, CDCl3): δ = 3.81-3.74 (m, 1 H), 3.53-3.43 (m, 1 H), 2.85 (d, 2
J = 16.8 Hz, 1 H), 2.35 (d, 2
J = 16.8 Hz, 1 H), 2.19-2.00 (m, 2 H), 1.94-1.58 (m, 5 H), 1.45-1.17 (m, 3 H), 0.85 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 117.8, 82.8, 61.8, 42.5, 36.5, 34.8, 30.2, 25.5, 21.3, 20.8, 18.9. MS (EI, 70 eV): m/z (%) = 180, 162 (2), 150 (2), 139 (100), 111 (15), 93 (15), 81 (12), 68 (36). HRMS: m/z calcd: 180.1388; found: 180.1390.