Zusammenfassung
Das klinische Outcome von Intensivpatienten kann durch eine standardisierte Ernährungstherapie verbessert werden. Allerdings sind Studien zur enteralen oder parenteralen Ernährung, die den Anforderungen der „evidence-based medicine” gerecht werden, noch rar. Aus diesem Grund muss die Standardisierung immer noch ganz wesentlich auf dem Boden pathophysiologischer Überlegungen erfolgen. Wir beschreiben ein Konzept zur enteralen und parenteralen Ernährung schwer kranker Patienten, das eine Hyperalimentation in der akuten Phase der Erkrankung vermeidet und gleichzeitig immunologische Gesichtspunkte bei der Substratauswahl berücksichtigt. Eine äquivalente Zusammensetzung von enteraler und parenteraler Ernährung ermöglicht den problemlosen Übergang zwischen beiden Ernährungsformen. Das Ernährungsziel ergibt sich aus der Multiplikation der Grundrate, d. h. dem Körpergewicht in KG als Laufrate in ml/h - entsprechend 24 kcal/kg KG/24 h - mit dem Zielfaktor, der zwischen 0,2 und 1,8 liegt. Die enterale und parenterale Ernährung wird begleitet von der Zufuhr immunmodulierender Substanzen, d. h. von Glutamin und Antioxidantien.
Abstract
The clinical outcome of critical ill patients can be improved by standardised nutrition. However, trials meeting the standard of evidence-based medicine are rare. For this reason, standards still have to be based on pathophysiological considerations. We describe a concept of combined nutrition for critically ill patients which avoids hyperalimentation and considers also immunological aspects. An equivalent composition of enteral and parenteral nutrition allows a transition between both forms without problems. The nutritional goal is defined by multiplication of the base rate, i. e., body weight in kg as delivery rate in mL/h, - corresponding to 24 kcal/kg BW/24 h - with a target factor which varies between 0.2 and 1.8. Both forms of nutrition are complemented by immune-modulating substrates as glutamine and antioxidants.
Literatur
1
Gabay C, Kushner I.
Acute-phase proteins and other systemic responses to inflammation [published erratum appears in N Engl J Med 1999 Apr 29; 340 (17): 1376].
N Engl J Med.
1999;
340 (6)
448-454
2
Hasselgren P O, Jagenburg R, Karlstrom L. et al .
Changes of protein metabolism in liver and skeletal muscle following trauma complicated by sepsis.
J Trauma.
1984;
24 (3)
224-228
3
Hasselgren P O.
Muscle protein metabolism during sepsis.
Biochem Soc Trans.
1995;
23 (4)
1019-1025
4
Aulick L H, Wilmore D W.
Increased peripheral amino acid release following burn injury.
Surgery.
1979;
85 (5)
560-565
5
Rosenblatt S, Clowes Jr G H, George B C. et al .
Exchange of amino acids by muscle and liver in sepsis.
Arch Surg.
1983;
118 (2)
167-175
6
Pearl R H, Clowes Jr G H, Hirsch E F. et al .
Prognosis and survival as determined by visceral amino acid clearance in severe trauma.
J Trauma.
1985;
25 (8)
777-783
7
Mizock B A.
Alterations in carbohydrate metabolism during stress: a review of the literature.
Am J Med.
1995;
98 (1)
75-84
8
White R H, Frayn K N, Little R A. et al .
Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique.
JPEN J Parent Ent Nutrition.
1987;
11 (4)
345-353
9
Stoner H B, Little R A, Frayn K N. et al .
The effect of sepsis on the oxidation of carbohydrate and fat.
Br J Surg.
1983;
70 (1)
32-35
10
Cuthbertson D P.
Post-shock metabolic response.
Lancet.
1942;
1
433-437
11 Moore F D. The body cell mass and its supporting environment; body composition in health and disease. Philadelphia, PA: Saunders 1963
12
Rolih C A, Ober K P.
The endocrine response to critical illness.
Med Clin North Am.
1995;
79 (1)
211-224
13
Souba W W.
Cytokine control of nutrition and metabolism in critical illness.
Curr Probl Surg.
1994;
31 (7)
577-643
14
Tappy L, Schwarz J M, Schneiter P. et al .
Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients [see comments].
Crit Care Med.
1998;
26 (5)
860-867
15
Peck M D, Alexander J W, Gonce S J. et al .
Low protein diets improve survival from peritonitis in guinea pigs.
Ann Surg.
1989;
209 (4)
448-454
16
Alexander J W, Gonce S J, Miskell P W. et al .
A new model for studying nutrition in peritonitis. The adverse effect of overfeeding.
Ann Surg.
1989;
209 (3)
334-340
17
Krishnan J A, Parce P B, Martinez A. et al .
Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes.
Chest.
2003;
124 (1)
297-305
18
Kreymann G, Ebener C, Hartl W. et al .
DGEM-Leitlinie Enterale Ernährung: Intensivmedizin.
Akt Ernähr-Med.
2003;
28 (Supplement 1)
S42-S50
19
Braunschweig C L, Levy P, Sheean P M. et al .
Enteral compared with parenteral nutrition: a meta-analysis.
Am J Clin Nutr.
2001;
74 (4)
534-542
20
Heyland D K, Dhaliwal R, Drover J W. et al .
Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients.
JPEN J Parenter Enteral Nutr.
2003;
27 (5)
355-373
21
Dhaliwal R, Jurewitsch B, Harrietha D. et al .
Combination enteral and parenteral nutrition in critically ill patients: harmful or beneficial? A systematic review of the evidence.
Intensive Care Med.
2004;
30 (8)
1666-1671
22
Carpentier Y A, Dupont I E.
Advances in intravenous lipid emulsions.
World J Surg.
2000;
24 (12)
1493-1497
23
Grimm H, Tibell A, Norrlind B. et al .
Immunoregulation by parenteral lipids: impact of the n-3 to n-6 fatty acid ratio.
JPEN J Parent Ent Nutrition.
1994;
18 (5)
417-421
24
Battistella F D, Widergren J T, Anderson J T. et al .
A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition.
J Trauma.
1997;
43 (1)
52-58
25
Mertes N, Grimm H, Furst P. et al .
Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical patients: a randomized, double-blind, multicenter study.
Ann Nutr Metab.
2006;
50 (3)
253-259
26
Wichmann M W, Thul P, Czarnetzki H D. et al .
Evaluation of clinical safety and beneficial effects of a fish oil containing lipid emulsion (Lipoplus, MLF541): Data from a prospective, randomized, multicenter trial*.
Crit Care Med.
2007;
35
700-716
27
Grimm H, Mertes N, Goeters C. et al .
Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients.
Eur J Nutr.
2006;
45 (1)
55-60
28
Gadek J E, DeMichele S J, Karlstad M D. et al .
Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group [see comments].
Crit Care Med.
1999;
27 (8)
1409-1420
29
Singer P, Theilla M, Fisher H. et al .
Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury.
Crit Care Med.
2006;
34 (4)
1033-1038
30
Pontes-Arruda A, Aragao A M, Albuquerque J D.
Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock.
Crit Care Med.
2006;
34 (9)
2325-2333
31
Wischmeyer P E.
Clinical applications of L-glutamine: past, present, and future.
Nutr Clin Pract.
2003;
18 (5)
377-385
32
Novak F, Heyland D K, Avenell A. et al .
Glutamine supplementation in serious illness: a systematic review of the evidence.
Crit Care Med.
2002;
30 (9)
2022-2029
33
Kreymann K G, Berger M M, Deutz N E. et al .
ESPEN Guidelines on Enteral Nutrition: Intensive care.
Clin Nutr.
2006;
25 (2)
210-223
34
Heyland D K, Dhaliwalm R, Day A. et al .
Optimizing the dose of glutamine dipeptides and antioxidants in critically ill patients: a phase I dose-finding study.
JPEN J Parenter Enteral Nutr.
2007;
31 (2)
109-118
35
Heyland D K, Dhaliwal R, Day A G. et al .
REducing Deaths due to Oxidative Stress (The REDOXS Study): Rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients.
Proc Nutr Soc.
2006;
65 (3)
250-263
36
Alonso D V, Diaz J, Serrano E. et al .
Plasma redox status relates to severity in critically ill patients.
Crit Care Med.
2000;
28 (6)
1812-1814
37
Angstwurm M W, Engelmann L, Zimmermann T. et al .
Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock.
Crit Care Med.
2007;
35 (1)
118-126
38
Heyland D K, Novak F, Drover J W. et al .
Should immunonutrition become routine in critically ill patients? A systematic review of the evidence.
JAMA.
2001;
286 (8)
944-953
1 Das hier beschriebene Konzept wurde in Zusammenarbeit mit der Firma Fresenius Kabi Deutschland GmbH entwickelt.
Prof. Dr. K. G. Kreymann
Klinik für Intensivmedizin, Universitätskrankenhaus Hamburg-Eppendorf
Martinistraße 52
20246 Hamburg
eMail: kreymann@uke.uni-hamburg.de