Subscribe to RSS
DOI: 10.1055/s-2007-980366
Neutral π-Nucleophile-Catalyzed Cyanation of Aldehydes and Ketones
Publication History
Publication Date:
23 May 2007 (online)
Abstract
1-Methoxy-2-methyl-1-(trimethylsiloxy)propene, a neutral π-nucleophile, was found to be able to efficiently catalyze the cyanation (cyanosilylation and cyanocarbonation) of various aldehydes and ketones, and this study provided the first illustration of using a neutral π-nucleophile for the development of synthetically useful organocatalysis.
Key words
π-nucleophile - cyanosilylation - cyanocarbonation - aldehydes - ketones
- For recent reviews, see:
-
1a
France S.Guerin DJ.Miller SJ.Lectka T. Chem. Rev. 2003, 103: 2985 -
1b
Fu GC. Acc. Chem. Res. 2004, 37: 542 -
1c
Fu GC. Acc. Chem. Res. 2000, 33: 412 -
1d
Tian S.-K.Chen Y.Hang J.Tang L.MaDaid P.Deng L. Acc. Chem. Res. 2004, 37: 621 - For recent reviews, see:
-
2a
Methot JL.Roush WR. Adv. Synth. Catal. 2004, 346: 1035 -
2b
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535 -
2c
Vedejs E.Daugulis O.MacKay JA.Rozners E. Synlett 2001, 1499 - 3 For a review, see:
Li A.-H.Dai L.-X.Aggarwal VK. Chem. Rev. 1997, 97: 2341 - For recent reviews, see:
-
4a
Mayr H.Kempf B.Ofial AR. Acc. Chem. Res. 2003, 36: 66 -
4b
Langer P. Synthesis 2002, 441 -
4c
Mahrwald R. Chem. Rev. 1999, 99: 1095 -
5a
Rathore R.Kochi JK. J. Org. Chem. 1996, 61: 627 ; and references therein -
5b
Fukuzumi S.Fujta M.Matsubayashi G.Otera J. Chem. Lett. 1993, 1451 - For reviews on organocatalysis, see:
-
6a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
6b
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2001, 40: 3726 - For recent reviews, see:
-
7a
Achard TRJ.Clutterbuck LA.North M. Synlett 2005, 1828 -
7b
Kanai M.Kato N.Ichikawa E.Shibasaki M. Synlett 2005, 1491 -
7c
Chen F.-X.Feng X. Synlett 2005, 892 -
7d
Brunel J.-M.Holmes IP. Angew. Chem. Int. Ed. 2004, 43: 2752 -
7e
North M. Tetrahedron: Asymmetry 2003, 14: 147 -
7f
Gregory RJH. Chem. Rev. 1999, 99: 3649 - For the organocatalysis using trimethylsilyl cyanide as a cyanide source, see:
-
8a
Kobayashi S.Tsuchiya Y.Mukaiyama T. Chem. Lett. 1991, 537 -
8b
Tian S.-K.Hong R.Deng L. J. Am. Chem. Soc. 2003, 125: 9900 -
8c
Baeza A.Nájera C.Retamosa Mde G.Sansano JM. Synthesis 2005, 2787 -
8d
Denmark SE.Chung W.-J. J. Org. Chem. 2006, 71: 4002 -
8e
Wang L.Huang X.Jiang J.Liu X.Feng X. Tetrahedron Lett. 2006, 47: 1581 -
8f
Evans DA.Wong RY. J. Org. Chem. 1977, 42: 350 -
8g
Fetterly BM.Verkade JG. Tetrahedron Lett. 2005, 46: 8061 -
8h
Wang Z.Fetterly B.Verkade JG. J. Organomet. Chem. 2002, 646: 161 -
8i
Kitani Y.Kumamoto T.Isobe T.Fukuda K.Ishikawa T. Adv. Synth. Catal. 2005, 347: 1653 -
8j
Qin B.Liu X.Shi J.Zheng K.Zhao H.Feng X. J. Org. Chem. 2007, 72: 2374 -
8k
Wen Y.Huang X.Huang J.Xiong Y.Qin B.Feng X. Synlett 2005, 2445 -
8l
Li Y.He B.Feng X.Zhang G. Synlett 2004, 1598 -
8m
Zhou H.Chen F.-X.Qin B.Feng X.Zhang G. Synlett 2004, 1077 -
8n
Kim SS.Kim DW.Rajagopal G. Synthesis 2004, 213 -
8o
Kim SS.Rajagopal G.Kim DW.Song DH. Synth. Commun. 2004, 34: 2973 -
8p
Song JJ.Gallou F.Reeves JT.Tan Z.Yee NK.Senanayake CH. J. Org. Chem. 2006, 71: 1273 -
8q
Kano T.Sasaki K.Konishi T.Mii H.Maruoka K. Tetrahedron Lett. 2006, 47: 4615 -
8r
Suzuki Y.Bakar AMD.Muramatsu K.Sato M. Tetrahedron 2006, 62: 4227 -
8s
Liu X.Qin B.Zhou X.He B.Feng X. J. Am. Chem. Soc. 2005, 127: 12224 -
8t
Fuerst DE.Jacobsen EN. J. Am. Chem. Soc. 2005, 127: 8964 -
8u
He B.Li Y.Feng X.Zhang G. Synlett 2004, 1776 -
8v
Córdoba R.Plumet J. Tetrahedron Lett. 2003, 44: 6157 -
8w
Blanrue A.Wilhelm R. Synlett 2004, 2621 -
8x
Miura T.Masaki Y. J. Chem. Soc., Perkin Trans. 1 1995, 2155 -
8y
Miura T.Masaki Y. J. Chem. Soc., Perkin Trans. 1 1994, 1659 - For the organocatalysis using alkyl cyanoformate as a cyanide source, see:
-
9a
Berthiaume D.Poirier D. Tetrahedron 2000, 56: 5995 -
9b
Deardorff DR.Taniguchi CM.Tafti SA.Kim HY.Choi SY.Downey KJ.Nguyen TV. J. Org. Chem. 2001, 66: 7191 -
9c
Tian S.-K.Deng L. J. Am. Chem. Soc. 2001, 123: 6195 -
9d
Tian S.-K.Deng L. Tetrahedron 2006, 62: 11320 -
9e
Poirier D.Berthiaume D.Boivin RP. Synlett 1999, 1423 - For some other recent examples, see:
-
10a
Xiong Y.Huang X.Gou S.Huang J.Wen Y.Feng X. Adv. Synth. Catal. 2006, 348: 538 -
10b
Iwanami K.Aoyagi M.Oriyama T. Tetrahedron Lett. 2006, 47: 4741 -
10c
Li Q.Liu X.Wang J.Shen K.Feng X. Tetrahedron Lett. 2006, 47: 4011 -
10d
Khan NH.Agrawal S.Kureshy RI.Abdi SHR.Mayani VJ.Jasra RV. Tetrahedron: Asymmetry 2006, 17: 2659 -
10e
Kim SS.Lee SH.Kwak JM. Tetrahedron: Asymmetry 2006, 17: 1165 -
10f
Moreno RM.Rosol M.Moyano A. Tetrahedron: Asymmetry 2006, 17: 1089 -
10g
Rodríguez B.Pastó M.Jimeno C.Pericàs MA. Tetrahedron: Asymmetry 2006, 17: 151 -
10h
Kim SS.Kwak JM. Tetrahedron 2006, 62: 49 -
10i
Belokon YN.Maleev VI.North M.Usanov DL. Chem. Commun. 2006, 4614 -
10j
Belokon YN.Ishibashi E.Nomura H.North M. Chem. Commun. 2006, 1775 -
10k
Gou S.Chen X.Xiong Y.Feng X. J. Org. Chem. 2006, 71: 5732 -
10l
Baeza A.Casas J.Nájera C.Sansano J.Saá JM. Eur. J. Org. Chem. 2006, 1949 -
10m
Iwanami K.Aoyagi M.Oriyama T. Tetrahedron Lett. 2005, 46: 7487 -
10n
Baeza A.Nájera C.Sansano JM.Saá JM. Tetrahedron: Asymmetry 2005, 16: 2385 -
10o
Kurono N.Yamaguchi M.Suzuki K.Ohkuma T. J. Org. Chem. 2005, 70: 6530 -
10p
Ryu DH.Corey EJ. J. Am. Chem. Soc. 2005, 127: 5384 -
10q
Hatano M.Ikeno T.Miyamoto T.Ishihara K. J. Am. Chem. Soc. 2005, 127: 10776 -
10r
Lundgren S.Wingstrand E.Penhoat M.Moberg C. J. Am. Chem. Soc. 2005, 127: 11592 -
10s
Yamagiwa N.Tian J.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 3413 -
10t
Qin YC.Liu L.Pu L. Org. Lett. 2005, 7: 2381 -
10u
Li Y.He B.Qin B.Feng X.Zhang G. J. Org. Chem. 2004, 69: 7910 -
10v
Ryu DH.Corey EJ. J. Am. Chem. Soc. 2004, 126: 8106 -
10w
Chen F.-X.Liu X.Qin B.Zhou H.Feng X.Zhang G. Synthesis 2004, 2266 -
10x
Uang B.-J.Fu I.-P.Hwang C.-D.Chang C.-W.Yang C.-T.Hwang D.-R. Tetrahedron 2004, 60: 10479 -
10y
Chen F.-X.Qin B.Feng X.Zhang G.Jiang Y. Tetrahedron 2004, 60: 10449 -
10z
Shen Y.Feng X.Li Y.Zhang G.Jiang Y. Eur. J. Org. Chem. 2004, 129 - 11 Most of the neutral π-nucleophiles listed in Table 1 are electron-rich substituted enol ethers. However, electron-rich enamines and the silyl enol derivatives of amides are excluded from the survey since they react readily with aldehydes at r.t. For the silyl enol derivatives of amides, see:
Myers AG.Widdowson KL. J. Am. Chem. Soc. 1990, 113: 9672 - 15 For a review on silicon Lewis acid catalysis, see:
Dilman AD.Ioffe SL. Chem. Rev. 2003, 103: 733 - 16 For the IR study on the activation of TMSCN with nucleophilic Ph3PO, see:
Ryu DH.Corey EJ. J. Am. Chem. Soc. 2004, 126: 8106 . For IR spectral data on TMSCN and TMSNC, see:Seckar JA.Thayer JS. Inorg. Chem. 1976, 15: 501
References and Notes
General Procedure
A mixture of aldehyde or ketone 1a-s (0.50 mmol), TMSCN (0.60-0.75 mmol) and catalyst 3j (1-15 mol%) was allowed to stand in a vial at 16-50 °C (indicated in Table
[2]
). The reaction was monitored by GC or TLC. After the aldehyde or ketone was completely consumed, the reaction mixture was subject to a reduced pressure of 5-10 mmHg at 25-50 °C to remove catalyst 3j and the remaining TMSCN, and the desired product 2a-s was obtained in quantitative yield. Cyanohydrin silyl ethers 2a-s are known compounds, see ref. 8-10.
The boiling point of catalyst 3j is 57 °C/15 mmHg, and that of TMSCN is 118 °C.
14For previously reported methods, the extractive procedures and/or column chromatography are needed to purify the products. See references 7-10, and references cited therein.
17No significant IR change was observed for benzaldehyde (or ethyl cyanoformate) with the addition of catalyst 3j.
18Based on its π-nucleophilicity, we speculate that catalyst 3j may activate the cyanating agent with its π-system through association. However, to our knowledge, this type of π-based catalysis has not been reported previously.