Subscribe to RSS
DOI: 10.1055/s-2007-982538
Synthesis of Bicyclic Pyroglutamic Acid Featuring the Ugi Reaction and a Unique Stereoisomerization at the Angular Position by Grob Fragmentation Followed by a Transannular Ketene [2+2] Cycloaddition Reaction
Publication History
Publication Date:
06 June 2007 (online)

Abstract
A stereoisomerization at the angular position of N-acylindoles during basic hydrolysis was discovered to give only the syn-bicyclic pyroglutamic acid, proceeding through a transannular [2+2] cycloaddition of a ketene-ketone intermediate generated by a Grob fragmentation.
Key words
isonitrile - Ugi reaction - pyroglutamic acid - diastereoselectivity - lactams
- For reviews, see:
- 1a
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168Reference Ris Wihthout Link - 1b
Ugi I. Angew. Chem., Int. Ed. Engl. 1962, 1: 8Reference Ris Wihthout Link - 2
Feling RH.Buchanan GO.Mincer TJ.Kauffman CA.Jensen PR.Fenical W. Angew. Chem. Int. Ed. 2003, 42: 355Reference Ris Wihthout Link - 3
Omura S.Fujimoto T.Otoguro K.Matsuzaki K.Moriguchi R.Tanaka H.Sasaki Y. J. Antibiot. 1991, 44: 113Reference Ris Wihthout Link - 4
Mori T.Takahashi K.Kashiwabara M.Uemara D. Tetrahedron Lett. 1985, 26: 1073Reference Ris Wihthout Link - For convertible isonitriles, see:
- 5a
Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 ; and references thereinReference Ris Wihthout Link - 5b
Rikimaru K.Yanagisawa A.Kan T.Fukuyama T. Synlett 2004, 41Reference Ris Wihthout Link - 5c
Rikimaru K.Mori K.Kan T.Fukuyama T. Chem. Commun. 2005, 394Reference Ris Wihthout Link - 5d
Pirrung MC.Ghorai S. J. Am. Chem. Soc. 2006, 128: 11772Reference Ris Wihthout Link - The application of indole-isonitrile 1 to natural product synthesis was demonstrated by our laboratory:
- 6a
Gilley CB.Buller MJ.Kobayashi Y. Angew. Chem. Int. Ed. 2007, in revisionReference Ris Wihthout Link - 6b
Isaacson J.Gilley CB.Kobayashi Y. J. Org. Chem. 2007, 72: 3913Reference Ris Wihthout Link - 7a
Short KM.Ching BW.Mjalli AMM. Tetrahedron 1997, 53: 6653Reference Ris Wihthout Link - 7b
Short KM.Mjalli AMM. Tetrahedron Lett. 1997, 38: 359Reference Ris Wihthout Link - 7c
Hanusch-Kompa C.Ugi I. Tetrahedron Lett. 1998, 39: 2725Reference Ris Wihthout Link - 8 An Ugi 4C-3CR reaction with a chiral amine and a γ-ketoacid has been reported to give
a 5:1 diastereomeric ratio:
Marcaccini S.Pepino R.Torroba T.Miguel D.Garcia-Valverde M. Tetrahedron Lett. 2002, 43: 8591Reference Ris Wihthout Link - 9
Fürstner A. In Organozinc Reagents: A Practical ApproachKnochel P.Jones P. Oxford University Press; New York: 1999. p.287Reference Ris Wihthout Link - 10 For a discussion of ring size and endo/exo selectivity, see:
Screttas CG.Smonou IC. J. Org. Chem. 1998, 53: 893Reference Ris Wihthout Link - 11a
Carey FA.Sundberg RJ. In Advanced Organic Chemistry 4th ed.: Plenum; New York: 2000. p.172Reference Ris Wihthout Link - 11b
Johnson F. Chem. Rev. 1968, 68: 375Reference Ris Wihthout Link - 12
More JD.Finney NS. Org. Lett. 2002, 4: 3001Reference Ris Wihthout Link - 13 The synthesis of the γ-ketoester as the ethyl ester in high enantiopurity has been
reported:
García Ruano JL.Barros D.Maestro MC.Alcudia A.Fernández I. Tetrahedron: Asymmetry 1998, 9: 3445Reference Ris Wihthout Link - 14 γ-Ketoacid 7 has been made from a different ketone starting material and is known to exist in
the hemi-ketal form 7a (Figure 4):
Mondon A.Menz H.Zander J. Chem. Ber. 1963, 96: 826Reference Ris Wihthout Link - 16 The solvent alcohol is purported to open the imidate intermediate in the Ugi 4C-3CR
with γ-ketoacids:
Harriman GCB. Tetrahedron Lett. 1997, 38: 5591Reference Ris Wihthout Link - 23
Grob CA. Angew. Chem., Int. Ed. Engl. 1969, 8: 535Reference Ris Wihthout Link - 24
Corey EJ.Reddy LR. Org. Lett. 2006, 8: 1717Reference Ris Wihthout Link
References and Notes
Although 7 is known to exist as the hemi-ketal 7a, presumably under equilibrium in the Ugi reaction conditions, that did not prevent it from reacting in the Ugi 4C-3CR.
178a: 1H NMR (400 MHz, CDCl3): δ = 9.03 (s, 1 H), 7.65 (d, J = 8.0 Hz, 1 H), 7.27 (d, J = 8.3 Hz, 2 H), 7.26 (d, J = 7.3 Hz, 1 H), 7.19, (d, J = 5.7 Hz, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 6.80 (d, J = 8.8 Hz, 2 H), 4.96 (d, J = 15.6 Hz, 1 H), 4.47 (t, J = 5.2 Hz, 1 H), 3.75 (s, 1 H), 3.63 (d, J = 16.0 Hz, 1 H), 3.42 (s, 3 H), 3.39 (s, 3 H), 2.92 (dd, J = 5.6, 14.0 Hz, 1 H), 2.83 (dd, J = 5.6, 14.0 Hz, 1 H), 2.32 (d, J = 16.0 Hz, 1 H), 2.19 (td, J = 4.0, 12.8 Hz, 1 H), 1.81 (m, 5 H), 1.58 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ = 175.7, 169.0, 158.7, 136.0, 131.1, 130.0, 128.6, 128.3, 127.5, 125.5, 124.7, 113.9, 107.1, 77.1, 73.7, 55.4, 54.6, 54.5, 45.5, 43.1, 37.2, 29.3, 25.6, 21.8, 19.9; HRMS: m/z calcd for C27H34N2O6: 482.2411; found: 482.2405.
18Crystal data for 8a: C27H34N2O6, Mr = 482.56, triclinic, space group P1, a = 9.899 (3) Å, b = 12.169 (4) Å, c = 13.444 (4) Å, α = 79.540 (4)°, β = 80.366 (4)°, γ = 69.755 (4)°, V = 1484.6 (7) Å3, Z = 2, ρ calc = 1.080 Mg/m3, F(000) = 516, λ = 0.71073 Å, T = 200 (2) K, µ(MoKa) = 0.076 mm-1. Of the 16570 measured reflections, 11473 were independent [R(int) = 0.0283]. The final refinement converged at R1 = 0.0629 for I > 2σ(I), wR2 = 0.1654 for all data. The data for 8a, 9a and 10 were collected on a Bruker diffractometer with an APEX CCD detector, the structure was solved by direct methods (SHELXL-97) and refined with all data by full matrix least squares on F2. CCDC 634645 contains the supplementary crystallographic data of 8a. The data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax:+44 (1223)336033 or deposit@ccdc.cam.ac.uk.
199a: 1H NMR (500 MHz, CDCl3): δ = 8.34 (d, J = 8.5 Hz, 1 H), 7.55 (d, J = 7.5 Hz, 1 H), 7.59 (d, J = 4.0 Hz, 1 H), 7.35 (t, 8.0 Hz, 1 H), 7.29 (t, J = 7.5 Hz, 1 H), 7.23 (d, J = 8.5 Hz, 2 H), 6.81 (d, J = 8.5 Hz, 2 H), 6.56 (d, J = 4.0 Hz, 1 H), 5.02 (d, J = 16.0 Hz, 1 H), 4.21 (d, J = 16.5 Hz, 1 H), 3.76 (s, 3 H), 3.62 (d, J = 16.0 Hz, 1 H), 2.59 (td, J = 5.5, 13.5 Hz, 1 H), 2.50 (br s, 1 H, OH), 2.40 (d, J = 16.0 Hz, 1 H), 2.31 (td, J = 3.5, 14.0 Hz, 1 H), 2.20 (m, 1 H), 1.82 (m, 3 H), 1.64 (m, 1 H), 1.54 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ = 176.8, 170.8, 159.1, 137.2, 129.6, 129.1, 128.8, 125.4, 124.7, 124.2, 121.0, 117.2, 114.2, 109.1, 79.0, 76.3, 55.4, 45.2, 44.6, 29.8, 26.4, 21.7, 19.8; HRMS: m/z calcd for C25H26N2O4: 418.1887; found: 418.1883.
209c: 1H NMR (400 MHz, CDCl3): δ = 7.83 (d, J = 8.5 Hz, 1 H), 7.24 (d, J = 8.0 Hz, 2 H), 7.19 (t, J = 7.5 Hz, 1 H), 7.08 (d, J = 7.0 Hz, 1 H), 7.01 (t, J = 7.5 Hz, 1 H), 6.57 (d, J = 9.0 Hz, 2 H), 5.60 (t, J = 7.0 Hz, 1 H), 4.59 (d, J = 14.5 Hz, 1 H), 4.17 (d, J = 14.5 Hz, 1 H), 3.53 (s, 3 H), 3.15 (dd, J = 8.0, 16.5 Hz, 1 H), 2.95 (dd, J = 5.5, 16.0 Hz, 1 H), 2.82 (d, J = 17.5 Hz, 1 H), 2.65 (d, J = 17.5 Hz, 1 H), 2.00 (dd, J = 4.0, 14.0 Hz, 1 H), 1.65 (m, 1 H), 1.58 (m, 2 H), 1.29 (m, 2 H), 1.11 (m, 1 H); HRMS: m/z calcd for C25H26N2O4: 418.1887; found: 418.1893.
219d: 1H NMR (500 MHz, CDCl3): δ = 7.72 (d, J = 8.0 Hz, 1 H), 7.14 (t, J = 7.5 Hz, 1 H), 7.12 (d, J = 8.5 Hz, 2 H), 7.12 (behind peak), 7.03 (t, J = 7.5 Hz, 1 H), 6.44 (d, J = 9.0 Hz, 2 H), 5.85 (t, J = 7.5 Hz, 1 H), 4.70 (d, J = 15.5 Hz, 1 H), 4.30 (d, J = 15.0 Hz, 1 H), 3.54 (s, 3 H), 3.10 (dd, J = 7.0, 15.0 Hz, 1 H), 2.93 (dd, J = 9.0, 15.0 Hz, 1 H), 2.93 (behind peak), 2.79 (d, J = 16.5 Hz, 1 H), 2.47 (d, J = 16.5 Hz, 1 H), 2.04 (td, J = 4.5, 14.0 Hz, 1 H), 1.84 (m, 2 H), 1.47 (m, 2 H), 1.29 (td, J = 3.0, 12.5 Hz, 1 H), 1.10 (m, 1 H); HRMS: m/z calcd for C25H26N2O4: 418.1887; found: 418.1889.
2210: 1H NMR (500 MHz, CDCl3): δ = 7.23 (d, J = 8.5 Hz, 2 H), 6.80 (d, J = 8.0 Hz, 2 H), 4.66 (d, J = 15.5 Hz, 1 H), 4.24 (d, J = 15.5 Hz, 1 H), 3.78 (s, 3 H), 3.20 (br s, 1 H, OH), 2.77 (d, J = 16.0 Hz, 1 H), 2.46 (d, J = 16.5 Hz, 1 H), 2.14 (m, 2 H), 1.81 (tt, J = 4.5, 19.0 Hz, 2 H), 1.67 (td, J = 4.0, 14.5 Hz, 1 H), 1.53 (m, 1 H), 1.41 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ = 175.9, 175.6, 159.0, 130.2, 129.4, 114.0, 74.3, 72.3, 55.4, 44.5, 44.4, 36.0, 27.9, 20.5, 20.3; HRMS: m/z calcd for C17H21NO5: 319.1414; found: 319.1417.
25Crystal data for 9a: C25H26N2O4, Mr = 418.48, monoclinic, space group P2(1)/c, a = 17.172 (6) Å, b = 27.378 (11) Å, c = 13.501 (5) Å, α = 90°, β = 100.125 (5)°, γ = 90°, V = 6248 (4) Å3, Z = 12, ρ calc = 1.335 Mg/m3, F(000) = 2664, λ = 0.71073 Å, T = 100 (2) K, µ(MoKa) = 0.091 mm-1. Of the 50332 measured reflections, 13977 were independent [R(int) = 0.0772]. The final refinement converged at R1 = 0.2393 for I > 2σ(I), wR2 = 0.5894 for all data. CCDC 634643 contains the supplementary crystallographic data of 9a.
26Crystal data for 10: C17H21NO5, Mr = 319.35, orthorhombic, space group Pccn, a = 31.323 (2) Å, b = 9.3197 (6) Å, c = 10.4743 (6) Å, α = 90°, β = 90°, γ = 90°, V = 3057.6 (3) Å3, Z = 8, ρ calc = 1.387 Mg/m3, F(000) = 1360, λ = 1.54178 Å, T = 100 (2) K, µ(MoKa) = 0.846 mm-1. Of the 12336 measured reflections, 2763 were independent [R(int) = 0.0266]. The final refinement converged at R1 = 0.0472 for I > 2σ(I), wR2 = 0.1227 for all data. CCDC 634647 contains the supplementary crystallographic data of 10.
27A single diastereomer of the N,O-acetal 12a (Figure [5] ), the relative stereochemistry of which was not determined, was formed.