References and Notes
1
Murukami S.
Takemoto T.
Shimizu Z.
J. Pharm. Soc. Jpn.
1953,
73:
1026
2
Hollmann M.
Heinemann S.
Annu. Rev. Neurosci.
1994,
17:
31
3
Cantrell BE.
Zimmerman DM.
Monn JA.
Kamboj RK.
Hoo KH.
Tizzano JP.
Pullar IA.
Farrell LN.
Bleakman D.
J. Med. Chem.
1996,
39:
3617
4
Coyle JT.
Schwarcz R.
Nature (London)
1976,
263:
244
5
Sperk G.
Prog. Neurobiol. (Oxford)
1994,
42:
1
6
Oppolzer S.
Thirring KJ.
J. Am. Chem. Soc.
1982,
104:
4978
For reviews concerning previous syntheses of kainic acid, see:
7a
Parsons AF.
Tetrahedron
1996,
52:
4149
7b
Clayden J.
Read B.
Hebditch KR.
Tetrahedron
2005,
61:
5713
7c
Rosini G.
Chim. Ind. (Milan)
2001,
83:
75
For some recent syntheses of kainic acid:
8a
Nakagawa H.
Sugahara T.
Ogasawara K.
Org. Lett.
2000,
2:
3181
8b
Clayden J.
Menet CJ.
Mansfield DJ.
Chem. Commun.
2002,
38
8c
Clayden JC.
Menet CJ.
Tchabanenko K.
Tetrahedron
2002,
58:
4727
8d
Trost BM.
Rudd MT.
Org. Lett.
2003,
5:
1467
8e
Hoppe D.
Montserrat Martinez M.
Org. Lett.
2004,
6:
3743
8f
Hodgson DM.
Hachisu S.
Andrews MD.
Org. Lett.
2005,
7:
815
8g
Lautens M.
Scott ME.
Org. Lett.
2005,
7:
3045
8h
Anderson JC.
O’Loughlin JMA.
Tornos JA.
Org. Biomol. Chem.
2005,
3:
2741
8i
Morita Y.
Tokuyama H.
Fukuyama T.
Org. Lett.
2005,
7:
4337
8j
Hodgson DM.
Hachisu S.
Andrews MD.
J. Org. Chem.
2005,
70:
8866
8k
Poisson J.-F.
Orellana A.
Greene AE.
J. Org. Chem.
2005,
70:
10860
8l
Pandey SK.
Orellana A.
Greene AE.
Poisson J.-F.
Org. Lett.
2006,
8:
5665
8m Chalker, J.; Yang, A.; Deng, K.; Cohen, T., unpublished results; private communication from T. Cohen in the form of a lecture in Paris, 2006.
9a
Tremblay J.-F.
Chem. Eng. News
2000,
78:
14
9b
Tremblay J.-F.
Chem. Eng. News
2000,
78:
131
10
Poli G.
Giambastiani G.
Pacini B.
Porcelloni M.
J. Org. Chem.
1998,
63:
804
11
Madec D.
Prestat G.
Martini E.
Fristrup P.
Poli G.
Norrby P.-O.
Org. Lett.
2005,
7:
995
12 Compound 1 (66% ee) was obtained in seven steps and 16% global yield from commercially available compounds: Xia Q.
Ganem B.
Org. Lett.
2001,
3:
485
13
Hecht S.
Amslinger S.
Jauch J.
Kis K.
Trentinaglia V.
Adam P.
Eizenreich W.
Bacher A.
Rohdich F.
Tetrahedron Lett.
2002,
43:
8929
14a Large-scale preparation of 4-chloro-2-methylbut-2-en-1-ol from 2-methyl-2-vinyl oxirane and TiCl4 (see ref. 13) afforded a poor (27%) yield. Alternatively, treatment of the same oxirane with CuCl2-LiCl (see ref. 13) gave the corresponding aldehyde in 68% yield. NaBH4 reduction of the latter gave the desired alcohol in 43% yield, see: Fox TD.
Poulter CD.
J. Org. Chem.
2002,
67:
5009
14b Acetylation with Ac2O-Et3N gave 1-acetoxy-4-chloro-2-methyl-2-butene in 29% yield (Scheme
[8]
).
For some examples concerning the use of allylic sulfones in palladium-catalyzed allylic alkylation, see:
15a
Trost BM.
Schmuff NR.
Miller JM.
J. Am. Chem. Soc.
1980,
102:
5979
15b
Clayden J.
Julia M.
J. Chem. Soc., Chem. Commun.
1994,
1905
15c
Orita A.
Watanabe A.
Tsuchiya H.
Otera J.
Tetrahedron
1999,
55:
2889
15d
Cheng W.-C.
Halm C.
Evarts JB.
Olmstead MM.
Kurth MJ.
J. Org. Chem.
1999,
64:
8557
15e
Deng K.
Chalker J.
Yang A.
Cohen T.
Org. Lett.
2005,
7:
3637
16a
Truce WE.
Goralski CT.
Christensen LW.
Bavry RH.
J. Org. Chem.
1970,
35:
4217
16b
Min JH.
Lee JS.
Yang JD.
Koo S.
J. Org. Chem.
2003,
68:
7925
17
Procedure for the Palladium-Catalyzed Cyclization Reaction: To a solution of tetrabutylammonium bromide (10 mol%) in CH2Cl2 (1 mL) were added in this order allylpalladium chloride dimer (5 mol%) and dppe (12.5 mol%). After 5 min stirring, to the thus formed catalytic system were added successively a CH2Cl2 (5 mL) solution of 6 (795 mg, 1.6 mmol), H2O (6.0 mL), and a 50% aq KOH solution (6.4 mmol). The resulting biphasic system was stirred vigorously at r.t. for 16 h. The aqueous phase was extracted with CH2Cl2 (3 ×). The collected organic phases were dried over MgSO4 and the solvent was removed in vacuo. The crude product was purified by flash chromatography to afford 7 in quantitative yield as an oil. 1H NMR (400 MHz, CDCl3): δ = 7.19 (d, J = 8.6 Hz, 2 H), 6.86 (d, J = 8.6 Hz, 2 H), 4.78 (br s, 2 H), 4.46 (d, J = 14.6 Hz, 1 H), 4.40 (d, J = 14.6 Hz, 1 H), 3.87 (d, J = 10.8 Hz, 3 H), 3.81 (d, J = 10.8 Hz, 3 H), 3.80 (s, 3 H), 3.55 (dd, J = 8.3, 9.6 Hz, 1 H), 3.20-3.32 (m, 1 H), 2.98-3.07 (m, 1 H), 2.94 (dd, J = 4.5, 22.8 Hz, 1 H), 1.63 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.3, 159.2, 144.3, 129.6, 127.4, 114.1, 112.3, 55.3, 53.5 (J = 100 Hz), 50.1, 46.4, 46.0 (J = 140 Hz), 39.7, 19.2. IR: 2955, 2360, 1688, 1514, 1247, 1031 cm-1. MS (ESI+): m/z = 392 [M + K+], 376 [M + Na+], 354 [M + H+].
18a
Fortunato JM.
Ganem B.
J. Org. Chem.
1976,
41:
2194
18b
Oppolzer W.
Poli G.
Tetrahedron Lett.
1986,
27:
4717
For pioneering work concerning reduction reactions by copper hydride, see:
19a
Mahoney WS.
Brestensky DM.
Stryker JM.
J. Am. Chem. Soc.
1988,
110:
291
For copper-catalyzed examples using PMHS as hydride source, see:
19b
Lipshutz BH.
Keith J.
Papa P.
Vivian R.
Tetrahedron Lett.
1998,
39:
4627
19c
Lipshutz BH.
Chrisman W.
Noson K.
Papa P.
Sclafani JA.
Vivian RW.
Keith JM.
Tetrahedron
2000,
56:
2779
19d
Lipshutz BH.
Chrisman W.
Noson K.
J. Organomet. Chem.
2001,
624:
367
19e For the first example reporting the use of NHC-copper catalyst, see:
19f
Jurkauskas V.
Sadighi JP.
Buchwald SL.
Org. Lett.
2003,
5:
2417
20
Procedure for the Hydride Conjugate Addition: An oven-dried flask under an argon atmosphere was charged with IPr-CuCl (2 mol%), t-BuONa (10 mol%) and anhydrous toluene (1 mL). After 10 min stirring at r.t., PMHS (90 µL) was added and the resulting orange solution was stirred at r.t. for 5 min. Then toluene (1 mL), and further PMHS (270 µL) were added. A solution of 8 (1:1 E/Z mixture) (508 mg, 1.54 mmol) in toluene (8 mL) was added via cannula to the thus generated reducing system and the reaction mixture was stirred at r.t. for 16 h. H2O was added, the aqueous phase was extracted with EtOAc (3 ×). The collected organic phases were washed with brine, dried over MgSO4 and the solvents were removed in vacuo. The crude product was purified by flash chromatography to afford pure 9 as an oil (72%). 1H NMR (400 MHz, CDCl3): δ = 7.16 (d, J = 8.6 Hz, 2 H), 6.83 (d, J = 8.6 Hz, 2 H), 4.74 (br s, 1 H), 4.65 (br s, 1 H), 4.39 (d, J = 14.2 Hz, 1 H), 4.35 (d, J = 14.2 Hz, 1 H), 4.11 (q, J = 7.1 Hz, 2 H), 3.77 (s, 3 H), 3.36-3.42 (m, 1 H), 3.10-3.15 (m, 2 H), 3.03 (dd, J = 1.3, 10.1 Hz, 1 H), 2.83 (dd, J = 3.5, 17.2 Hz, 1 H), 2.21-2.32 (m, 1 H), 1.42 (s, 3 H), 1.23 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 174.1, 172.5, 159.2, 143.1, 130.0, 128.1, 114.9, 114.0, 60.6, 55.3, 49.0, 46.3, 42.0, 41.6, 31.0, 19.8, 14.3. IR: 2936, 1731, 1687, 1513, 1246, 1175, 1032 cm-1.
21
Oppolzer W.
Andres H.
Helv. Chim. Acta
1979,
62:
2282