RSS-Feed abonnieren
DOI: 10.1055/s-2007-982542
New Access to Kainic Acid via Intramolecular Palladium-Catalyzed Allylic Alkylation
Publikationsverlauf
Publikationsdatum:
06. Juni 2007 (online)

Abstract
The formal synthesis of kainic acid was carried out in eleven steps. The key cyclization step was accomplished through an intramolecular palladium-catalyzed allylic alkylation of an allylic sulfone. Further functionalization of the resulting pyrrolidone featured, inter alia, a N-heterocyclic carbene-copper hydride (NHC-CuH)-mediated stereoconvergent conjugate reduction.
Key words
kainic acid - synthesis - palladium - allylic alkylation - ring closure
- 1 
             
            Murukami S.Takemoto T.Shimizu Z. J. Pharm. Soc. Jpn. 1953, 73: 1026Reference Ris Wihthout Link
- 2 
             
            Hollmann M.Heinemann S. Annu. Rev. Neurosci. 1994, 17: 31Reference Ris Wihthout Link
- 3 
             
            Cantrell BE.Zimmerman DM.Monn JA.Kamboj RK.Hoo KH.Tizzano JP.Pullar IA.Farrell LN.Bleakman D. J. Med. Chem. 1996, 39: 3617Reference Ris Wihthout Link
- 4 
             
            Coyle JT.Schwarcz R. Nature (London) 1976, 263: 244Reference Ris Wihthout Link
- 5 
             
            Sperk G. Prog. Neurobiol. (Oxford) 1994, 42: 1Reference Ris Wihthout Link
- 6 
             
            Oppolzer S.Thirring KJ. J. Am. Chem. Soc. 1982, 104: 4978Reference Ris Wihthout Link
- For reviews concerning previous syntheses of kainic acid, see:
- 7a 
             
            Parsons AF. Tetrahedron 1996, 52: 4149Reference Ris Wihthout Link
- 7b 
             
            Clayden J.Read B.Hebditch KR. Tetrahedron 2005, 61: 5713Reference Ris Wihthout Link
- 7c 
             
            Rosini G. Chim. Ind. (Milan) 2001, 83: 75Reference Ris Wihthout Link
- For some recent syntheses of kainic acid:
- 8a 
             
            Nakagawa H.Sugahara T.Ogasawara K. Org. Lett. 2000, 2: 3181Reference Ris Wihthout Link
- 8b 
             
            Clayden J.Menet CJ.Mansfield DJ. Chem. Commun. 2002, 38Reference Ris Wihthout Link
- 8c 
             
            Clayden JC.Menet CJ.Tchabanenko K. Tetrahedron 2002, 58: 4727Reference Ris Wihthout Link
- 8d 
             
            Trost BM.Rudd MT. Org. Lett. 2003, 5: 1467Reference Ris Wihthout Link
- 8e 
             
            Hoppe D.Montserrat Martinez M. Org. Lett. 2004, 6: 3743Reference Ris Wihthout Link
- 8f 
             
            Hodgson DM.Hachisu S.Andrews MD. Org. Lett. 2005, 7: 815Reference Ris Wihthout Link
- 8g 
             
            Lautens M.Scott ME. Org. Lett. 2005, 7: 3045Reference Ris Wihthout Link
- 8h 
             
            Anderson JC.O’Loughlin JMA.Tornos JA. Org. Biomol. Chem. 2005, 3: 2741Reference Ris Wihthout Link
- 8i 
             
            Morita Y.Tokuyama H.Fukuyama T. Org. Lett. 2005, 7: 4337Reference Ris Wihthout Link
- 8j 
             
            Hodgson DM.Hachisu S.Andrews MD. J. Org. Chem. 2005, 70: 8866Reference Ris Wihthout Link
- 8k 
             
            Poisson J.-F.Orellana A.Greene AE. J. Org. Chem. 2005, 70: 10860Reference Ris Wihthout Link
- 8l 
             
            Pandey SK.Orellana A.Greene AE.Poisson J.-F. Org. Lett. 2006, 8: 5665Reference Ris Wihthout Link
- 8m  
            Chalker, J.; Yang, A.; Deng, K.; Cohen, T., unpublished results; private communication from T. Cohen in the form of a lecture in Paris, 2006. Reference Ris Wihthout Link
- 9a 
             
            Tremblay J.-F. Chem. Eng. News 2000, 78: 14Reference Ris Wihthout Link
- 9b 
             
            Tremblay J.-F. Chem. Eng. News 2000, 78: 131Reference Ris Wihthout Link
- 10 
             
            Poli G.Giambastiani G.Pacini B.Porcelloni M. J. Org. Chem. 1998, 63: 804Reference Ris Wihthout Link
- 11 
             
            Madec D.Prestat G.Martini E.Fristrup P.Poli G.Norrby P.-O. Org. Lett. 2005, 7: 995Reference Ris Wihthout Link
- 12 Compound 1 (66% ee) was obtained in seven steps and 16% global yield from commercially available
            compounds:  
            Xia Q.Ganem B. Org. Lett. 2001, 3: 485Reference Ris Wihthout Link
- 13 
             
            Hecht S.Amslinger S.Jauch J.Kis K.Trentinaglia V.Adam P.Eizenreich W.Bacher A.Rohdich F. Tetrahedron Lett. 2002, 43: 8929Reference Ris Wihthout Link
- 14a Large-scale preparation of 4-chloro-2-methylbut-2-en-1-ol from 2-methyl-2-vinyl oxirane
            and TiCl4 (see ref. 13) afforded a poor (27%) yield. Alternatively, treatment of the same oxirane
            with CuCl2-LiCl (see ref. 13) gave the corresponding aldehyde in 68% yield. NaBH4 reduction of the latter gave the desired alcohol in 43% yield, see:  
            Fox TD.Poulter CD. J. Org. Chem. 2002, 67: 5009Reference Ris Wihthout Link
- 14b  
            Acetylation with Ac2O-Et3N gave 1-acetoxy-4-chloro-2-methyl-2-butene in 29% yield (Scheme [8] ). Reference Ris Wihthout Link
- For some examples concerning the use of allylic sulfones in palladium-catalyzed allylic alkylation, see:
- 15a 
             
            Trost BM.Schmuff NR.Miller JM. J. Am. Chem. Soc. 1980, 102: 5979Reference Ris Wihthout Link
- 15b 
             
            Clayden J.Julia M. J. Chem. Soc., Chem. Commun. 1994, 1905Reference Ris Wihthout Link
- 15c 
             
            Orita A.Watanabe A.Tsuchiya H.Otera J. Tetrahedron 1999, 55: 2889Reference Ris Wihthout Link
- 15d 
             
            Cheng W.-C.Halm C.Evarts JB.Olmstead MM.Kurth MJ. J. Org. Chem. 1999, 64: 8557Reference Ris Wihthout Link
- 15e 
             
            Deng K.Chalker J.Yang A.Cohen T. Org. Lett. 2005, 7: 3637Reference Ris Wihthout Link
- 16a 
             
            Truce WE.Goralski CT.Christensen LW.Bavry RH. J. Org. Chem. 1970, 35: 4217Reference Ris Wihthout Link
- 16b 
             
            Min JH.Lee JS.Yang JD.Koo S. J. Org. Chem. 2003, 68: 7925Reference Ris Wihthout Link
- 18a 
             
            Fortunato JM.Ganem B. J. Org. Chem. 1976, 41: 2194Reference Ris Wihthout Link
- 18b 
             
            Oppolzer W.Poli G. Tetrahedron Lett. 1986, 27: 4717Reference Ris Wihthout Link
- For pioneering work concerning reduction reactions by copper hydride, see:
- 19a 
             
            Mahoney WS.Brestensky DM.Stryker JM. J. Am. Chem. Soc. 1988, 110: 291Reference Ris Wihthout Link
- For copper-catalyzed examples using PMHS as hydride source, see:
- 19b 
             
            Lipshutz BH.Keith J.Papa P.Vivian R. Tetrahedron Lett. 1998, 39: 4627Reference Ris Wihthout Link
- 19c 
             
            Lipshutz BH.Chrisman W.Noson K.Papa P.Sclafani JA.Vivian RW.Keith JM. Tetrahedron 2000, 56: 2779Reference Ris Wihthout Link
- 19d 
             
            Lipshutz BH.Chrisman W.Noson K. J. Organomet. Chem. 2001, 624: 367Reference Ris Wihthout Link
- 19e  
            For the first example reporting the use of NHC-copper catalyst, see: Reference Ris Wihthout Link
- 19f 
             
            Jurkauskas V.Sadighi JP.Buchwald SL. Org. Lett. 2003, 5: 2417Reference Ris Wihthout Link
- 21 
             
            Oppolzer W.Andres H. Helv. Chim. Acta 1979, 62: 2282Reference Ris Wihthout Link
References and Notes
Procedure for the Palladium-Catalyzed Cyclization Reaction: To a solution of tetrabutylammonium bromide (10 mol%) in CH2Cl2 (1 mL) were added in this order allylpalladium chloride dimer (5 mol%) and dppe (12.5 mol%). After 5 min stirring, to the thus formed catalytic system were added successively a CH2Cl2 (5 mL) solution of 6 (795 mg, 1.6 mmol), H2O (6.0 mL), and a 50% aq KOH solution (6.4 mmol). The resulting biphasic system was stirred vigorously at r.t. for 16 h. The aqueous phase was extracted with CH2Cl2 (3 ×). The collected organic phases were dried over MgSO4 and the solvent was removed in vacuo. The crude product was purified by flash chromatography to afford 7 in quantitative yield as an oil. 1H NMR (400 MHz, CDCl3): δ = 7.19 (d, J = 8.6 Hz, 2 H), 6.86 (d, J = 8.6 Hz, 2 H), 4.78 (br s, 2 H), 4.46 (d, J = 14.6 Hz, 1 H), 4.40 (d, J = 14.6 Hz, 1 H), 3.87 (d, J = 10.8 Hz, 3 H), 3.81 (d, J = 10.8 Hz, 3 H), 3.80 (s, 3 H), 3.55 (dd, J = 8.3, 9.6 Hz, 1 H), 3.20-3.32 (m, 1 H), 2.98-3.07 (m, 1 H), 2.94 (dd, J = 4.5, 22.8 Hz, 1 H), 1.63 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.3, 159.2, 144.3, 129.6, 127.4, 114.1, 112.3, 55.3, 53.5 (J = 100 Hz), 50.1, 46.4, 46.0 (J = 140 Hz), 39.7, 19.2. IR: 2955, 2360, 1688, 1514, 1247, 1031 cm-1. MS (ESI+): m/z = 392 [M + K+], 376 [M + Na+], 354 [M + H+].
20Procedure for the Hydride Conjugate Addition: An oven-dried flask under an argon atmosphere was charged with IPr-CuCl (2 mol%), t-BuONa (10 mol%) and anhydrous toluene (1 mL). After 10 min stirring at r.t., PMHS (90 µL) was added and the resulting orange solution was stirred at r.t. for 5 min. Then toluene (1 mL), and further PMHS (270 µL) were added. A solution of 8 (1:1 E/Z mixture) (508 mg, 1.54 mmol) in toluene (8 mL) was added via cannula to the thus generated reducing system and the reaction mixture was stirred at r.t. for 16 h. H2O was added, the aqueous phase was extracted with EtOAc (3 ×). The collected organic phases were washed with brine, dried over MgSO4 and the solvents were removed in vacuo. The crude product was purified by flash chromatography to afford pure 9 as an oil (72%). 1H NMR (400 MHz, CDCl3): δ = 7.16 (d, J = 8.6 Hz, 2 H), 6.83 (d, J = 8.6 Hz, 2 H), 4.74 (br s, 1 H), 4.65 (br s, 1 H), 4.39 (d, J = 14.2 Hz, 1 H), 4.35 (d, J = 14.2 Hz, 1 H), 4.11 (q, J = 7.1 Hz, 2 H), 3.77 (s, 3 H), 3.36-3.42 (m, 1 H), 3.10-3.15 (m, 2 H), 3.03 (dd, J = 1.3, 10.1 Hz, 1 H), 2.83 (dd, J = 3.5, 17.2 Hz, 1 H), 2.21-2.32 (m, 1 H), 1.42 (s, 3 H), 1.23 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 174.1, 172.5, 159.2, 143.1, 130.0, 128.1, 114.9, 114.0, 60.6, 55.3, 49.0, 46.3, 42.0, 41.6, 31.0, 19.8, 14.3. IR: 2936, 1731, 1687, 1513, 1246, 1175, 1032 cm-1.
 
    