Synlett 2007(10): 1507-1512  
DOI: 10.1055/s-2007-982554
LETTER
© Georg Thieme Verlag Stuttgart · New York

Chemistry of Polyhalogenated Nitrobutadienes, Part 5: Synthesis and ­Reactions of Dichloromethyl Nitrovinylidene Ketones of Heterocycles

Viktor A. Zapol’skiia, Jan C. Namysloa, Mimoza Gjikajb, Dieter E. Kaufmann*a
a Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
Fax: +49(5323)722834; e-Mail: dieter.kaufmann@tu-clausthal.de;
b Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Str. 4, 38678 Clausthal-Zellerfeld, Germany
Further Information

Publication History

Received 16 March 2007
Publication Date:
06 June 2007 (online)

Abstract

An easy access to dichloromethyl nitrovinylidene ketones of five-membered heterocycles is presented starting from nitroperchlorobutadiene. These complex ketones are valuable starting materials for novel product structures in versatile reactions such as selective reductions, substitutions to give α-nitroacryl cyanides, fragmentations by means of an alkoxide, as well as ring-cleavage/ring-closure steps by the action of hydrazine. Some of the products show biological activity in crop protection.

    References and Notes

  • 1a Kaberdin RV. Potkin VI. Zapol’skii VA. Russ. Chem. Rev.  1997,  66:  827 
  • 1b Zapol’skii VA. Namyslo JC. Adam AEW. Kaufmann DE. Heterocycles  2004,  63:  1281 
  • 1c Zapol’skii VA. Nutz E. Namyslo JC. Adam AEW. Kaufmann DE. Synthesis  2006,  2927 
  • 1d Zapol’skii VA. Namyslo JC. Blaschkowski B. Kaufmann DE. Synlett  2006,  3464 
  • 1e Zapol’skii VA. Namyslo JC. Gjikaj M. Kaufmann DE. ARKIVOC  2007,  (i):  76 
  • 2 Ibis C. Bull. Soc. Chim. Belg.  1996,  105:  317 
  • 3 Zapol’skii VA. Potkin VI. Nechai NI. Kaberdin RV. Pevzner MS. Russ. J. Org. Chem.  1997,  33:  1461 
  • 5 Molchanov LV. Kadyrov CS. Ayupova AT. Chem. Nat. Compd.  1981,  17:  357 
  • 6a Hirai K. Ishiba T. Sugimoto H. Chem. Pharm. Bull.  1972,  20:  1711 
  • 6b Schaumann E. Scheiblich S. Wriede U. Adiwidjaja G. Chem. Ber.  1988,  121:  1165 
  • 6c Shibuya I. Taguchi Y. Tsuchiya T. Oishi A. Katoh E. Bull. Chem. Soc. Jpn.  1994,  67:  3048 
  • 6d Terang N. Mehta B. Ila H. Junjappa H. Tetrahedron  1998,  54:  12973 
  • 7a Roedig A. Becker H.-J. Justus Liebigs Ann. Chem.  1955,  597:  214 
  • 7b Takahashi M. Zheng M. Oshida T. Narahara K. J. Heterocycl. Chem.  1994,  31:  205 
  • 7c Chowdhury SKD. Sarkar M. Mahalanabis KK. J. Chem. Res., Synop.  2003,  11:  746 
  • 8a Chattaway FD. Lye RJ. Proc. R. Soc. London, Ser. A  1932,  135:  282 
  • 8b Chattaway FD. J. Chem. Soc.  1933,  1624 
  • 8c Chattaway FD. Parkes GD. J. Chem. Soc.  1935,  1005 
  • 9a Linderman RJ. Kirollos SK. Tetrahedron Lett.  1989,  30:  2049 
  • 9b Saloutin VI. Fomin AN. Pashkevich KI. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.)  1985,  34:  135 
  • 9c Penning TD. Talley JJ. Bertenshaw SR. Carter JS. Collins PW. Docter S. Graneto MJ. Lee LF. Malecha JW. Miyashiro JM. Rogers RS. Rogier DJ. Yu SS. Anderson GD. Burton EG. Cogburn JN. Gregory SA. Koboldt CM. Perkins WE. Seibert K. Veenhuizen AW. Zhang YY. Isakson PC. J. Med. Chem.  1997,  40:  1347 
  • 9d Tsuji K. Konishi N. Spears GW. Ogino T. Nakamura K. Tojo T. Ochi T. Shimojo F. Senoh H. Matsuo M. Chem. Pharm. Bull.  1997,  45:  1475 
  • 9e Filyakova VI. Karpenko NS. Kuznetsova OA. Pashkevich KI. Russ. J. Org. Chem.  1998,  34:  381 
  • 9f Li J. DeMello KML. Cheng H. Sakya SM. Bronk BS. Rafka RJ. Jaynes BH. Ziegler CB. Kilroy C. Mann DW. Nimz EL. Lynch MP. Haven ML. Kolosko NL. Minich ML. Li C. Dutra JK. Rast B. Crosson RM. Morton BJ. Kirk GW. Callaghan KM. Koss DA. Shavnya A. Lund LA. Seibel SB. Petras CF. Silvia A. Bioorg. Med. Chem. Lett.  2004,  14:  95 
  • 10 Kagabu S. Moriya K. Shibuya K. Hattori Y. Tsuboi S. Shiokawa K. Biosci. Biotechnol. Biochem.  1992,  56:  362 
  • 11a Zhang N. Tomizawa M. Casida JE. J. Med. Chem.  2002,  45:  2832 
  • 11b Shiokawa K. Moriya K. Shibuya K. Hattori Y. Tsuboi S. Kagabu SJ. Biosci. Biotechnol. Biochem.  1992,  56:  1364 
  • 11c Kagabu S. Nishiwaki H. Sato K. Hibi M. Yamaoka N. Nakagawa Y. Pest Manage. Sci.  2002,  58:  483 
  • 11d Fischer R, Jeschke P, Erdelen C, Lösel P, Reckmann U, Kaufmann D, and Zapol’skii V. inventors; (Bayer AG); WO  03/040129A1. 
  • 12a Soulen RL. Clifford DB. Crim FF. Johnston JA. J. Org. Chem.  1971,  36:  3386 
  • 12b Belen’kii LI. Brokhovetskii DB. Krayushkin MM. Tetrahedron  1991,  47:  447 
  • 12c Garuti L. Roberti M. Pession A. Leoncini E. Hrelia S. Bioorg. Med. Chem. Lett.  2001,  11:  3147 
  • 12d Phillips WG. Ratts KW. J. Org. Chem.  1972,  37:  1526 
  • 12e Hall RH. Jordaan A. Malherbe M. J. Chem. Soc., Perkin Trans. 1  1980,  126 
  • 12f Khlebnikov AF. Novikov MS. Kusei EYu. Kopf J. Kostikov RR. Russ. J. Org. Chem.  2003,  39:  559 
  • 12g Kosinskaya IM. Pinchuk AM. Shevchenko VI. J. Gen. Chem. USSR (Engl. Transl.)  1971,  41:  101 
  • 12h Kristol D. Shapiro R. J. Org. Chem.  1973,  38:  1470 
  • 14 Ol’dekop YA. Kaberdin RV. J. Org. Chem. USSR (Engl. Transl.)  1975,  11:  288 
  • 15 Kagabu S. Yokoyama AK. Iwaya K. Tanaka M. Biosci. Biotechnol. Biochem.  1998,  62:  1216 
4

Crystal Data for 7 have been deposited with the Cambridge Crystallographic Data Center (CCDC 632420) and may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax:+44 (1223)336033; e-mail: fileserv@ccdc.ac.uk or www.ccdc.cam.ac.uk].

13

Experimental Details
1H NMR and 13C NMR spectra were obtained on a BRUKER Avance 400. Proton spectra were referenced to TMS; 13C NMR spectra refer to the solvent signal at δ = 77.0 ppm. Spectra in DMSO-d 6 were referenced to δ = 2.50 ppm (1H) and 39.7 ppm (13C), respectively. High-resolution mass spectra were measured with a Bruker Daltonik APEX IV FT Ion Cyclotron Resonance mass spectrometer with electrospray ionization.
1-(2-Chloro-5-pyridylmethyl)-2-(2,3,3-trichloro-1-nitro-allylidene)imidazolidine ( 3)
To a solution of 7.19 g (38.7 mmol) N-(2-chloro-5-pyridyl-methyl)ethane-1,2-diamine in 30 mL MeOH was added a solution of 5.00 g (18.4 mmol) 1,1,2,4,4-pentachloro-3-nitro-1,3-butadiene (1) in 5 mL MeOH at -40 °C within 5 min. The resulting mixture was kept at -40 °C for 1 h, then 1 h at r.t. The precipitate was sucked off, washed with H2O (3 × 20 mL), MeOH (1 × 10 mL), and Et2O (2 × 20 mL). Drying in vacuo yielded 3.19 g (45%) of imidazolidine 3, mp 174-175 °C. 1H NMR (DMSO-d 6): δ = 3.78 (br s, 4 H, NCH2CH2), 4.56 (br s, 2 H, H2CCaryl), 7.54 (d, J = 8.3 Hz, 1 H, H-3aryl), 7.77 (dd, J = 8.3, 2.4 Hz, 1 H, H-4aryl), 8.35 (d, J = 2.4 Hz, 1 H, H-6aryl), 9.41 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 42.7, 49.5, 51.0 (3 CH2), 103.3 (CNO2), 124.4 (CH), 125.3, 125.6 (CCl=CCl2), 131.5 (Cquat), 137.9 (CH), 147.9 (N=CH), 149.6 (NCCl), 159.8 (NCNH). HRMS (ESI) [M + H]+: m/z calcd for C12H10Cl4N4O2: 382.9631; found: 382.9632.
2-(2,3,3-Trichloro-1-nitroallylidene)-1,3-dimethyl-imidazolidine ( 4) In analogy to the preparation of 3, the dissolved nitro-perchlorobutadiene (1) was added to a solution of N,N′-dimethylethane-1,2-diamine (85% in H2O) in 20 mL MeOH. After completion of the reaction, 200 mL of cold H2O was added. Then, the aqueous phase was extracted with CHCl3 (3 × 20 mL). The organic layer was washed twice with H2O and dried over anhyd CaCl2. Removal of the solvent in vacuo afforded a crude product that was reprecipitated with Et2O (20 mL). Drying in vacuo again yielded 3.43 g (65%) imidazolidine 4, mp 122-124 °C. 1H NMR (CDCl3): δ = 3.00 (s, 6 H, NMe), 3.86 (br s, 4 H, NCH2). 13C NMR (CDCl3): δ = 35.4 (CH3), 49.8 (CH2), 99.6 (CNO2), 120.9, 125.4 (CCl=CCl2), 162.0 (NCN). HRMS (ESI) [M + H]+: m/z calcd for C8H10Cl3N3O2: 285.9914; found: 285.9913.
General Procedure for the Synthesis of 2-Nitrobuten-3-ones 7-11
A suspension of 5.00 mmol of the heterocycles 2-6 in 20 mL MeOH each was treated with 2.25 g (20.0 mmol) of a 40% solution of Me2NH in H2O. The mixture was then kept at 45-50 °C for the required reaction time, according to TLC (typically 2-10 h). After cooling to 5 °C, excessive amine was neutralized with concentrated HCl. Stirring at 30-70 °C (3-6 h, TLC monitoring), recooling to r.t., and adding of H2O (100 mL) then yielded a precipitate which was washed twice with H2O (2 × 20 mL) and Et2O (2 × 20 mL), in detail:
1,1-Dichloro-3-(imidazolidin-2-ylidene)-3-nitropropan-2-one ( 7) Reaction times: 6 h with Me2NH, 5 h with HCl at 40-45 °C; 80% yield; mp 169-170 °C. 1H NMR (DMSO-d 6): δ = 3.69 (br s, 4 H, NCH2CH2N), 7.35 (s, 1 H, Cl2CH), 9.12 (br s, 2 H, NH). 13C NMR (DMSO-d 6): δ = 43.6 (2 CH2), 70.9 (CHCl2), 113.6 (CNO2), 159.6 (NHCNH), 180.4 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C6H7Cl2N3O3: 239.9937; found: 239.9937.
1,1-Dichloro-3-{1-[(2-chloro-5-pyridyl)methyl]imid-azolidin-2-ylidene}-3-nitropropan-2-one ( 8)
Reaction times: 10 h with Me2NH, 5 h with HCl at 40-45 °C; 60% yield; mp 171-173 °C. 1H NMR (DMSO-d 6): δ = 3.87 (br s, 4 H, NCH2CH2N), 4.46 (br s, 2 H, NCH2), 7.49 (s, 1 H, CHCl2), 7.56 (d, 1 H, J = 8.3 Hz, H-3aryl), 7.76 (dd, 1 H, J = 8.3, 2.4 Hz, H-4aryl), 8.33 (d, 1 H, J = 2.4 Hz, H-6aryl), 10.31 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 42.8, 46.6, 47.9 (3 CH2), 69.5 (CHCl2), 107.5 (CNO2), 124.6 (CCl=CH), 129.9 (CHCCH), 140.0 (CH), 150.0 (N=CH), 150.3 (NCCl), 162.5 (NCNH), 175.4 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C12H11Cl3N4O3: 364.9970; found: 364.9971.
1,1-Dichloro-3-(1,3-dimethylimidazolidin-2-ylidene)-3-nitropropan-2-one ( 9)
Reaction times: 6 h with Me2NH, 6 h with HCl at 35-40 °C; 45% yield; mp 150-151 °C. 1H NMR (DMSO-d 6): δ = 2.86 (s, 6 H, NCH3), 3.91 (br s, 4 H, NCH2CH2), 7.54 (s, 1 H, CHCl2). 13C NMR (DMSO-d 6): δ = 33.6 (CH3), 49.1 (2 CH2), 69.8 (CHCl2), 106.4 (CNO2), 161.9 (NCN), 175.3 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C8H11Cl2N3O3: 268.0250; found: 268.0252.
As a side product, trichloroacrylic acid (12) was isolated: After the aforementioned acidic hydrolysis the mixture was treated with an excess of 10% NaHCO3 in H2O at 10 °C and set to pH 9. The usual extraction as described above then gave 9, whereas the basic aqueous solution was acidified with HCl, extracted with CH2Cl2 (2 × 20 mL), washed with H2O (2 × 10 mL) and dried over anhyd Na2SO4. Evaporation of the solvent yielded 12 (30%), mp 71-73 °C (lit. [14] 73-74 °C). 1H NMR (CDCl3): δ = 11.0 (br s, 1 H, COOH). 13C NMR (CDCl3): δ = 121.7 (CCl), 134.6 (CCl2), 165.8 (C=O).
1,1-Dichloro-3-nitro-3-(thiazolidin-2-ylidene)propan-2-one ( 10)
Reaction times: 2 h with Me2NH, 3 h with HCl at 65-70 °C; 50% yield; mp 130-131 °C. 1H NMR (DMSO-d 6): δ = 3.31 (t, 2 H, J = 8.6 Hz, SCH2), 4.07 (t, 2 H, J = 8.6 Hz, NCH2), 7.36 (s, 1 H, CHCl2), 10.83 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 29.0 (SCH2), 51.7 (NCH2), 70.8 (CHCl2), 120.7 (CNO2), 173.9 (HNCS), 180.1 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C6H6Cl2N2O3S: 256.9549; found: 256.9550.
1,1-Dichloro-3-(1,3-dithiolan-2-ylidene)-3-nitropropan-2-one ( 11)
Reaction times: 3 h with Me2NH, 3 h with HCl at 30-35 °C; 90% yield; mp 140-141 °C. 1H NMR (CDCl3): δ = 3.58 (m, 4 H, CH2), 7.12 (s, 1 H, CHCl2). 13C NMR (DMSO-d 6): δ = 38.3, 39.1 (2 SCH2), 69.0 (CHCl2), 133.0 (CNO2), 180.3 (SCS), 187.4 (C=O). HRMS (EI) [M + H]+: m/z calcd for C6H5Cl2NO3S2: 273.9161; found: 273.9162.
1,1-Dichloro-3-nitro-3-(thiazolidin-2-ylidene)propan-2-ol ( 13)
To a solution of 0.30 g (1.17 mmol) nitrobutenone 10 in 20 mL EtOH at 0 °C was added 0.049 g (1.30 mmol) NaBH4 within 2 min. The resulting mixture was kept at 0 °C for 10 min and for additional 15 min at 10 °C. After addition of 50 mL cold H2O and neutralization with 5% HCl, the precipitate that was formed was sucked off and washed with H2O (3 × 20 mL). Drying in vacuo yielded 0.24 g (80%) nitrobutenol 13; mp 122-124 °C. 1H NMR (DMSO-d 6): δ = 3.13 (t, 2 H, J = 8.6 Hz, SCH2), 3.86 (t, 2 H, J = 8.6 Hz, NCH2), 5.33 (br s, 1 H, CHCNO2), 6.35 (d, 1 H, J = 5.2 Hz, CHCl2), 7.15 (br s, 1 H, OH), 8.90 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 28.4 (SCH2), 50.3 (NCH2), 74.1, 75.0 [CH(OH)CHCl2], 116.8 (CNO2), 169.5 (HNCS). HRMS (ESI) [M + H]+: m/z calcd for C6H8Cl2N2O3S: 258.9705; found: 258.9707.
1,1-Dichloro-3-(1,3-dithiolan-2-ylidene)-3-nitropropan-2-ol ( 14)
Preparation as described for 13; 98% yield; mp 135-136 °C. 1H NMR (CDCl3): δ = 3.58 (m, 4 H, CH2), 4.00 (d, 1 H, J = 10.5 Hz, OH), 5.11 (dd, 1 H, J = 10.5, 8.7 Hz, CHOH), 6.23 (d, 1 H, J = 8.7 Hz, CHCl2). 13C NMR (CDCl3): δ = 38.0, 39.4 (2 SCH2), 72.5 (CHCl2), 78.5 [CH(OH)], 132.2 (CNO2), 173.4 (SCS). HRMS (ESI) [M + Na]+: m/z calcd for C6H7Cl2NO3S2: 297.9137; found: 297.9139.
1,1-Dichloro-3-(1,3-dithiolan-2-yl)-3-nitropropan-2-ol ( 15) (1) Starting from nitropropanol 14 in analogy to the synthesis of 13, 152 mg, 50% yield.
(2) Directly from nitropropanone 11 under modified conditions: To a suspension of 0.30 g (1.09 mmol) nitrobutenone 11 in 20 mL EtOH at 0 °C was added 0.045 g (1.20 mmol) NaBH4 within 2 min. The resulting mixture was kept at 0 °C for 10 min and at 10 °C for 15 min. In contrast to the reaction described above, in this case another portion (0.045 g, 1.20 mmol) of NaBH4 was added, and the mixture was kept at 10 °C for additional 60 min. After addition of 50 mL cold H2O, neutralization with 5% HCl, and extraction with CH2Cl2 (3 × 20 mL), the organic layer was washed with H2O and dried over anhyd CaCl2. Evaporation of the solvent and column chromatography (PE-EtOAc, 10:1) yielded a yellow oil, 106 mg (35%) of 15 as a mixture of erythro- und threo-isomers (5:1 ratio according to NMR). 1H NMR (CDCl3): δ (major isomer) = 3.29 (m, 5 H, SCH2CH2S, OH), 4.49 (m, 1 H, CHOH), 4.89 (dd, 1 H, J = 10.2, 8.1 Hz, CHNO2), 5.18 (d, 1 H, J = 10.2 Hz, SCHS), 5.81 (d, 1 H, J = 8.1 Hz, CHCl2); δ (minor isomer) = 3.29 (m, 5 H, SCH2CH2S, OH), 4.49 (m, 1 H, CHOH), 4.92 (dd, 1 H, J = 8.5, 6.0 Hz, CHNO2), 5.25 (d, 1 H, J = 8.5 Hz, SCHS), 6.12 (d, 1 H, J = 6.0 Hz, CHCl2). 13C NMR (CDCl3): δ (major isomer) = 37.9, 38.7 (SCH2CH2S), 50.6 (SCHS), 72.5 (CHCl2), 76.0 (CHOH), 90.5 (CHNO2); δ (minor isomer) = 37.8, 38.7 (SCH2CH2S), 49.9 (SCHS), 73.0 (CHCl2), 77.3 (CHOH), 91.7 (CHNO2). HRMS (ESI) [M + Na]+: m/z calcd for C6H9Cl2NO3S2: 299.9293; found: 299.9295.
1,1-Dichloro-3-(1,3-dithiolan-2-ylidene)-3-nitropropan-2-yl Acetate ( 16) A mixture of 0.30 g (1.09 mmol) nitrobutenol 14 and 0.18 g (2.18 mmol) NaOAc in 10 mL Ac2O were stirred for 4 h under reflux. After cooling to r.t. the mixture was diluted with 60 mL cold H2O. The resulting precipitate was sucked off and washed thoroughly with H2O (5 × 20 mL). Drying in vacuo yielded 0.33 g (95%) acetate 16, mp 119-120 °C. 1H NMR (CDCl3): δ = 2.15 (s, 3 H, CH3), 3.58 (m, 4 H, CH2), 6.39 (d, 1 H, J = 8.8 Hz, CHO), 6.54 (d, 1 H, J = 8.8 Hz, CHCl2). 13C NMR (CDCl3): δ = 20.4 (CH3), 38.1, 39.2 (2 SCH2), 70.5 (CHCl2), 76.2 (CHO), 130.4 (CNO2), 169.2 (C=O), 173.3 (SCS). HRMS (ESI) [M + Na]+: m/z calcd for C8H9Cl2NO4S2: 339.9242; found: 339.9242
2-(Nitromethylene)-1,3-dithiolane ( 17) To a solution of 0.30 g (1.09 mmol) nitrobutenone 11 in 20 mL EtOH at r.t. was added 0.15 g (2.20 mmol) NaOEt. The resulting mixture was kept at r.t. for 1 d. After cooling to 10 °C, addition of 60 mL cold H2O and neutralization with concd HCl, the resulting precipitate was sucked off and washed with H2O (2 × 20 mL). Drying in vacuo afforded 0.13 g (73%) dithiolane 17, mp 105-106 °C (lit. [6a] [c] 105-106 °C). 1H NMR (CDCl3): δ = 3.54 (br s, 4 H, SCH2), 7.57 (s, 1 H, CH). 13C NMR (CDCl3): δ = 36.8, 38.7 (2 SCH2), 124.0 (CHNO2), 167.4 (SCS).
3-Hydrazonomethyl-5-(2-mercaptoethyl)sulfanyl-4-nitro-1 H -pyrazol ( 18) A suspension of 0.30 g (1.09 mmol) 11 in 15 mL MeOH was treated with 0.27 g (5.45 mmol) N2H4·H2O (64% in H2O) at r.t. The resulting mixture was stirred for 5 h at the same temperature. Then the precipitate was sucked off, washed twice with H2O and once with MeOH (10 mL each portion). After drying in vacuo 0.20 g (75%) pyrazole 18 was obtained; mp 216-218 °C. 1H NMR (DMSO-d 6): δ = 2.64 (br s, 1 H, SH), 2.82 (m, 2 H, HSCH 2 ), 3.27 (m, 2 H, CSCH 2 ), 8.03 (s, 1 H, N=CH), 8.20 (br s, 2 H, NH2), 13.83 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 23.7 (HSCH2), 33.5 (CSCH2), 122.1 (N=CH), 127.0 (CNO2), 140.9 (N=C), 145.3 (NHCS). HRMS (ESI) [M + H]+: m/z calcd for C6H9N5O2S2: 248.0270; found: 248.0271.
Acetic Acid [5-(2-Mercapto-ethylsulfanyl)-4-nitro-1 H -pyrazol-3-ylmethylene]hydrazide ( 19)
A solution of 0.20 g (0.81 mmol) pyrazole 18 in 15 mL Ac2O was kept at 20 °C for 3 h. The precipitate was sucked off, washed with H2O (2 × 10 mL) and MeOH (1 × 10 mL) and dried in vacuo yielding 0.22 g (95%) pyrazole 19 (Z:E = 1:0.4); mp 213-215 °C. 1H NMR (DMSO-d 6): δ (major isomer) = 2.24 s (3 H, CH3), 2.66 br s (1 H, SH), 2.85 m (2 H, HSCH 2 ), 3.30 m (2 H, CSCH 2 ), 8.36 s (1 H, 1 J C,H = 178 Hz, N=CH), 11.75 (br s, 1 H, NH), 14.43 (br s, 1 H, NH); δ (minor isomer) = 2.00 s (3 H, CH3), 2.66 br s (1 H, SH), 2.85 m (2 H, HSCH 2 ), 3.30 (m, 2 H, CSCH 2 ), 8.59 (s, 1 H, 1 J C,H = 177 Hz, N=CH), 11.92 (br s, 1 H, NH), 14.61 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ (major isomer) = 20.3 (CH3), 23.7 (HSCH2), 33.7 (CSCH2), 129.4 (N=CH), 133.4 (CNO2), 138.2, 146.0, 172.9 (CO); δ (minor isomer) = 21.9 (CH3), 23.7 (HSCH2), 33.6 (CSCH2), 129.3 (N=CH), 133.3 (CNO2), 138.0, 146.0, 166.4 (CO). HRMS (EI) [M + H]+: m/z calcd for C8H11N5O3S2: 290.0382; found: 290.0376
1,1-Dichloro-3-(imidazolidin-2-ylidene)-3-nitropropan-2-ol ( 20)
Compound 20 was prepared as described for thiazolidine 13; 55% yield; mp 134-136 °C. 1H NMR (DMSO-d 6): δ = 3.61 (br s, 4 H, 2 CH2), 5.14 (d, 1 H, J = 5.1 Hz, CHOH), 6.29 (d, 1 H, J = 5.1 Hz, CHCl2), 6.70 (br s, 1 H, OH), 8.54 (br s, 2 H, NH). 13C NMR (DMSO-d 6): δ = 43.4 (2 CH2), 73.9, 75.1 (CHCl2CH), 106.4 (CNO2), 159.8 (NHCNH). HRMS (ESI) [M + H]+: m/z calcd for C6H9Cl2N3O3: 242.0094; found: 242.0095.
1-(2-Chloropyridin-5-ylmethyl)-2-(nitromethyl-ene)imidazolidine ( 21) To a solution of 0.50 g (1.37 mmol) imidazolidine 8 in 20 mL EtOH at 0 °C was added 0.055 g (1.44 mmol) NaBH4 within 1 min. After 10 min at this temperature, the mixture was diluted with 100 mL cold H2O and neutralized with 5% HCl. The resulting precipitate was sucked off, washed with H2O (3 × 20 mL), and dried in vacuo. Imidazolidine 21 was obtained in 60% yield, 0.21 g; mp 163-164 °C (lit. [15] 166-167 °C). 1H NMR (DMSO-d 6): δ = 3.58 (m, 4 H, NCH 2 CH 2 NH), 4.49 (s, 2 H, CH2Caryl), 6.77 (s, 1 H, CHNO2), 7.54 (d, 1 H, J = 8.1 Hz, H-3aryl), 7.78 (dd, 1 H, J = 8.1, 1.5 Hz, H-4aryl), 8.37 (d, 1 H, J = 1.5 Hz, H-6aryl), 8.90 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 42.7 (NHCH2), 45.4, 48.2 (CH2NCH2), 96.0 (CHNO2), 124.6 (CH), 131.6 (Cquat), 139.4 (CH), 149.4 (N=CH), 149.8 (CCl), 158.7 (NHCN).
3-(Imidazolidin-2-ylidene)-3-nitro-2-oxopropionitrile ( 22) To a solution of 0.50 g (2.08 mmol) imidazolidine 7 in 10 mL DMF was added 0.81 g (12.46 mmol) NaN3 in one portion at r.t. After stirring for 1 d, 70 mL cold H2O was added. On treatment with concd HCl a precipitate appeared that was sucked off and washed with H2O (2 × 20 mL) and MeOH (2 × 5 mL). Drying in vacuo yielded 0.13 g (35%) 22; mp 255-257 °C. 1H NMR (DMSO-d 6): δ = 3.70 (br s, 4 H, 2 × CH2), 10.03 (br s, 2 H, NH). 13C NMR (DMSO-d 6): δ = 43.5 (2 CH2), 112.2, 116.3 (CN, CNO2), 158.0 (NHCNH), 165.0 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C6H6N4O3: 183.0513; found: 183.0513.
1,1-Diazido-3-(1,3-dimethylimidazolidin-2-ylidene)-3-nitropropan-2-one ( 23)
The preparation followed the protocol for 22, but after addition of concd HCl the mixture was extracted with CH2Cl2 (6 × 20 mL). The organic layer then was washed with H2O and dried over CaCl2. Evaporation of the solvents afforded 0.38 g (75%) azide 23 (starting from 0.50 g, 1.86 mmol of 9), mp 123-125 °C. 1H NMR (DMSO-d 6): δ = 2.87 (s, 6 H, 2 × CH3), 3.91 (br s, 4 H, 2 CH2), 6.20 (s, 1 H, CH). 13C NMR (DMSO-d 6): δ = 33.8 (2 CH3), 49.1 (2 CH2), 75.1 (CH), 107.9 (CNO2), 161.9 (NCN), 178.2 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C8H11N9O3: 282.1058; found: 282.1059.
3-(1,3-Dimethylimidazolidin-2-ylidene)-3-nitro-2-oxo-propionitrile ( 24)
A solution of 0.30 g (1.09 mmol) azide 23 in 10 mL DMF was treated with additional 0.14 g (2.18 mmol) NaN3 and then was heated to 90-95 °C for 10 h. Work-up as described for 23 gave 0.09 g (40%) nitrile 24; mp 175-177 °C. 1H NMR (DMSO-d 6): δ = 2.89 (s, 6 H, 2 CH3), 3.93 (br s, 4 H, 2 CH2). 13C NMR (DMSO-d 6): δ = 34.1 (2 CH3), 49.4 (2 CH2), 112.6, 115.3 (CN, CNO2), 159.6 (NCN), 164.2 (C=O). HRMS (ESI) [M + H]+: m/z calcd for C8H10N4O3: 211.0826; found: 211.0826.