Subscribe to RSS
DOI: 10.1055/s-2007-984506
Efficient Lewis Acid Mediated Epoxyolefin Cyclizations with Pyrones as Terminators in Liquid SO2 as a Solvent
Publication History
Publication Date:
25 June 2007 (online)
Abstract
Lewis acids like BF3·OEt2, TiCl4, ZnCl2·OEt2, ZnI2, and InCl3 in liquid SO2 as a solvent at low temperatures have been found to be highly efficient in epoxyolefin cyclizations with pyrones as terminators.
Key words
epoxides - Lewis acids - cyclizations - heterocycles - pyrones - sulfur dioxide
-
1a Review:
Shiomi K.Tomoda H.Otoguro K.Omura S. Pure Appl. Chem. 1999, 71: 1059 -
1b
Omura S.Tomoda H.Kim YK.Nishida H. J. Antibiot. 1993, 46: 1168 -
1c
Kim YK.Tomoda H.Nishida H.Sunazuka T.Obata R.Omura S. J. Antibiot. 1994, 47: 154 - 3
Tomoda H.Tabata N.Nakata Y.Nishida H.Kaneko T.Obata R.Sunazuka T.Omura S. J. Org. Chem. 1996, 61: 882 - 4
Sliskovic DR.White AD. Trends Pharmacol. Sci. 1991, 12: 194 - 5
Sunazuka T.Omura S. Chem. Rev. 2005, 105: 4559 -
6a
Parker KA.Resnick L. J. Org. Chem. 1995, 60: 5726 -
6b
Smith AB.Kinsho T.Sunazuka T.Omura S. Tetrahedron Lett. 1996, 37: 6461 - 7 A different approach, the cationic cyclization with alkenes as initiators and pyrones as terminators has been studied also;
Leutbecher H. Ph.D. Thesis Universität Hohenheim; Germany: 2007. p.paper in preparation -
8a
Van Tamelen EE.Curphey TJ. Tetrahedron Lett. 1962, 3: 121 -
8b
Hanzlik RP. Organic Syntheses, Coll. Vol. VI John Wiley and Sons; New York: 1988. p.560 -
9a
Lygo B. Tetrahedron Lett. 1994, 35: 5073 -
9b
Lygo B. Tetrahedron 1995, 51: 12859 -
11a
Cervelló J.Marquet J.Moreno-Mañas M. J. Chem. Soc., Chem. Commun. 1987, 644 -
11b
Cervelló J.Marquet J.Moreno-Mañas M. Tetrahedron Lett. 1987, 28: 3715 -
11c
Marquet J.Moreno-Mañas M.Prat M. Tetrahedron Lett. 1989, 30: 3105 -
11d
Cervelló J.Marquet J.Moreno-Mañas M. Tetrahedron 1990, 46: 2035 -
12a
Schmidt D.Conrad J.Klaiber I.Beifuss U. Chem. Commun. 2006, 4732 -
12b
Schmidt D.Conrad J.Klaiber I.Mika S.Beifuss U. Synlett 2007, 333 - 13
Corey EJ.Keck GE.Székely I. J. Am. Chem. Soc. 1977, 99: 2006 -
14a
Ireland RE.Dawson MI.Bordner J.Dickerson RE. J. Am. Chem. Soc. 1970, 92: 2568 -
14b
Sharpless KB. J. Am. Chem. Soc. 1970, 92: 6999 -
14c
Van der Gen A.Wiedhaup K.Swoboda JJ.Dunathan HC.Johnson WS. J. Am. Chem. Soc. 1973, 95: 2656 - 15
Johnson WS.Berner D.Dumas DJ.Nederlof PJR.Welch J. J. Am. Chem. Soc. 1982, 104: 3508 -
16a
Muntyan GE.Kurbanov M.Smit VA.Semenovskii AV.Kucherov VF. Izv. Akad. Nauk. SSSR, Ser. Khim. 1973, 633 -
16b
Mustafaeva MT.Smit VA.Semenovskii AV.Kucherov VF. Izv. Akad. Nauk. SSSR, Ser. Khim. 1973, 1151 - 21
Tago K.Arai M.Kogen H. J. Chem. Soc., Perkin Trans. 1 2000, 2073 - 22
Barrero AF.Alvarez-Manzaneda EJ.Palomino PL. Tetrahedron 1994, 50: 13239 - 23
Bravo P.Arnone A.Ticozzi C.Cavicchio G.Marchetti V. Gazz. Chim. Ital. 1988, 118: 263
References and Notes
Compounds 1 refer to enantiomers and compounds 2-16 to racemates.
10Schmidt, D.; Beifuss, U., unpublished results.
17
Cyclization of 6 with BF
3
·OEt
2
in SO
2
(l)
Compound 6 (200 mg) was dissolved in liquid SO2 (10 mL) at -40 °C and BF3·OEt2 (223 µL, 1.107 mmol) was added dropwise at the same temperature. The resulting dark yellow solution was stirred for 2 h and the reaction mixture was allowed to warm to -20 °C. The cooling bath was removed and the excess SO2 was evaporated by stirring at r.t. The residue was treated with Et3N (780 µL, 5.56 mmol) followed by MeOH (2 mL) and CH2Cl2 (20 mL). After stirring for 10 min the volatiles were removed in vacuo. When the residue was submitted to flash column chromatography (SiO2, EtOAc) two fractions were isolated: 63 mg crude 7 and 126 mg crude 8; the total yield of 7 and 8 amounted to 95%. Analytically pure samples of 7 and 8 were obtained by semipreparative HPLC.
Selected Data for 7
IR (ATR): 3251, 2946, 2410, 1716, 1642, 1578, 1480, 1400, 1390, 1220, 1182, 1126, 1024, 976, 926, 850, 802, 744, 695 cm-1. UV/Vis (MeCN-H2O, 1:3): λmax (log ε) = 236.0 (4.27), 331.0 nm (3.94). 1H NMR (500 MHz, CD3OD): δ = 0.94 (s, 3 H, 9′-H3), 1.16 (s, 3 H, 8′-H3), 1.36 (s, 3 H, 10′-H3), 1.68 (dd, 1 H, 3
J
2
′
-H,1
′
-HB = 13.0 Hz, 3
J
2
′
-H,1
′
-HB = 4.6 Hz, 2′-H), 1.71-1.74 (m, 1 H, 5′-HA), 1.80-1.84 (m, 1 H, 4′-HA), 1.86-1.90 (m, 1 H, 5′-HB), 2.09-2.12 (m, 1 H, 4′-HB), 2.36 (dd, 1 H, 2
J
1
′
-HA,1
′
-HB = 16.9 Hz, 3
J
1
′
-HA,2
′
-H = 13.0 Hz, 1′-HA), 2.62 (dd, 1 H, 2
J
1
′
-HB,1
′
-HA = 17.3 Hz, 3
J
1
′
-HB,2
′
-H = 4.6 Hz, 1′-HB), 3.41 (dd, 1 H, 3
J
6
′
-H,5
′
-HA = 11.6 Hz, 3
J
6
′
-H,5
′
-HB = 4.4 Hz, 6-H), 6.89 (s, 1 H, 5-H), 7.73 (dd, 1 H, 3
J
5
′′
-H,6
′′
-H = 7.9 Hz, 3
J
5
′′
-H,4
′′
-H = 5.1 Hz, 5′′-H), 8.46 (d, 1 H, 3
J
6
′′
-H,5
′′
-H = 8.1 Hz, 6′′-H). 8.74 (br s, 1 H, 4′′-H), 9.13 (br s, 1 H, 2′′-H). 13C NMR (125 MHz, CD3OD): δ = 15.04 (C-9′), 18.88 (C-1′), 20.14 (C-10′), 27.89 (C-8′), 28.78 (C-5′), 38.27 (C-4′), 39.69 (C-7′), 47.66 (C-2′), 78.10 (C-6′), 82.00 (C-3′), 101.27 (C-5), 101.59 (C-3), 125.43 (C-5′′), 129.28 (C-1′′), 134.70 (C-6′′), 147.19 (C-2′′), 151.68 (C-4′′), 156.70 (C-6), 165.06 (C-4), 165.78 (C-2). MS (EI, 70 eV): m/z (%) = 341 (38) [M+], 323 (4), 308 (9), 256 (11), 202 (100), 148 (26), 121 (47), 106 (59), 78 (42), 43 (41). HRMS (EI, 70 eV): m/z calcd for C20H23NO4: 341.1627; found: 341.1650.
Selected Data for 8
IR (ATR): 3373, 3076, 2943, 2871, 1647, 1561, 1435, 1260, 1164, 1179, 1127, 1026, 931, 812, 702 cm-1. UV/Vis (MeCN-H2O, 1:3): λmax (log ε) = 228 (4.19), 277 nm (3.99). 1H NMR (500 MHz, CD3OD): δ = 0.94 (s, 3 H, 9′-H3), 1.17 (s, 3 H, 8′-H3), 1.44 (s, 3 H, 10′-H3), 1.70-1.73 (m, 1 H, 4′-HB), 1.76 (dd, 1 H, 3
J
2
′
-H,1
′
-HA = 12.6 Hz, 3
J
2
′
-H,1
′
-HB = 4.8 Hz, 2′-H), 1.88-1.96 (m, 2 H, 4′-HA, 5′-HB), 2.13-2.17 (m, 1 H, 5′-HA), 2.34 (dd, 1 H, 2
J
1
′
-HA,1
′
-HB = 16.4 Hz, 3
J
1
′
-HB,2
′
-H = 12.8 Hz, 1′-HA), 2.71 (dd, 1 H, 2
J
1
′
-HB,1
′
-HA = 16.4 Hz, 3
J
1
′
-HB,2
′
-H = 4.9 Hz, 1′-HB), 3.43 (dd, 1 H, 3
J
6
′
-H,5
′
-HA = 11.7 Hz,
3
J
6
′
-H,5
′
-HB = 4.1 Hz, 6′-H), 6.92 (s, 1 H, 5-H), 7.71 (dd, 1 H, 3
J
5
′′
-H,6
′′
-H = 8.1 Hz, 3
J
5
′′
-H,4
′′
-H = 5.0 Hz, 5′′-H), 8.41 (ddd, 1 H, 3
J
6
′′
-H,5
′′
-H = 8.2 Hz, 4
J
6
′′
-H,2
′′
-H = 2.1 Hz, 4
J
6
′′
-H,4
′′
-H = 1.5 Hz, 6′′-H), 8.76 (d, 1 H, 3
J
4
′′
-H,5
′′
-H = 4.3 Hz, 4′′-H), 9.09 (br s, 1 H, 2′′-H). 13C NMR (125 MHz, CD3OD): δ = 15.04 (C-9′), 17.32 (C-1′), 20.09 (C-10′), 27.96 (C-8′), 28.78 (C-5′), 38.02 (C-4′), 39.77 (C-7′), 47.95 (C-2′), 78.00 (C-6′), 86.22 (C-3′), 101.19 (C-3), 110.49 (C-5), 125.53 (C-5′′), 128.74 (C-1′′), 135.15 (C-6′′), 147.44 (C-2′′), 152.37 (C-4′′), 158.62 (C-6), 165.12 (C-2), 182.04 (C-4). MS (EI, 70 eV): m/z (%) = 341 (32) [M+], 323 (9), 308 (16), 256 (13), 202 (100), 148 (31), 121 (51), 106 (46), 78 (22), 43 (31). HRMS (EI, 70 eV): m/z calcd for C20H23NO4: 341.1627; found: 341.1622.
Ab initio calculations were performed at the DFT/B3LYP/6-31G level using a GAUSSIAN 03 package.