Subscribe to RSS
DOI: 10.1055/s-2007-984512
Construction of Extended π-Conjugation Systems Utilizing Novel Multicarbene Complexes of Titanium
Publication History
Publication Date:
25 June 2007 (online)
Abstract
Titanium-multicarbene complexes, namely organotitanium species having a plurality of titanium-carbene complex substructures, were easily prepared by the reaction of aromatic nuclei possessing spatially separated thioacetal moieties with the titanocene(II) reagent Cp2Ti[P(OEt)3]2. Reaction of these multicarbene complexes with aromatic ketones gave various highly conjugated compounds in good yields.
Key words
carbene complexes - conjugation - olefination - thioacetals - titanium
-
1a
Takeda T. Bull. Chem. Soc. Jpn. 2005, 78: 195 -
1b
Takeda T. Chem. Rec. 2007, 7: 24 - 2
Takeda T.Tsubouchi A. In Modern Carbonyl OlefinationTakeda T. Wiley-VCH; Weinheim: 2004. p.151 -
3a
Anderson DM.Bristow GS.Hitchcock PB.Jasim HA.Lappert MF.Skelton BW. J. Chem. Soc., Dalton Trans. 1987, 2843 -
3b
Fuchibe K.Iwasawa N. Chem. Eur. J. 2003, 9: 905 -
3c
Lalov AV.Egorov MP.Nefedov OM.Cherkasov VK.Ermolaev NL.Piskunov AV. Russ. Chem. Bull. 2005, 54: 807 - 4
Martin HC.James NH.Aitken J.Gaunt JA.Adams H.Haynes A. Organometallics 2003, 22: 4451 -
5a
Dötz KH.Tomuschat P.Nieger M. Chem. Ber./Recl. 1997, 130: 1605 -
5b
Tomuschat P.Kröner L.Steckhan E.Nieger M.Dötz KH. Chem. Eur. J. 1999, 5: 700 -
5c
Fernández I.Sierra MA.Mancheño MJ.Gómez-Gallego M.Ricart S. Organometallics 2001, 20: 4304 - For examples, see:
-
6a
Meier H. Angew. Chem., Int. Ed. Engl. 1992, 31: 1399 -
6b
Adam D.Closs F.Frey T.Funhoff D.Haarer D.Ringsdorf H.Schuhmacher P.Siemensmeyer K. Phys. Rev. Lett. 1993, 70: 457 -
6c
Adam D.Schuhmacher P.Simmerer J.Häussling L.Siemensmeyer K.Etzbach KH.Ringsdorf H.Haarer D. Nature (London) 1994, 371: 141 -
6d
Tanaka H.Tokito S.Taga Y.Okada A. Chem. Commun. 1996, 2175 -
6e
Jiang D.-L.Aida T. Nature (London) 1997, 388: 454 -
6f
Kraft A.Grimsdale AC.Holmes AB. Angew. Chem. Int. Ed. 1998, 37: 402 -
6g
Martin RE.Diederich F. Angew. Chem. Int. Ed. 1999, 38: 1350 -
6h
Friend RH.Gymer RW.Holmes AB.Burroughes JH.Marks RN.Taliani C.Bradley DDC.Dos Santos DA.Brédas JL.Lögdlund M.Salaneck WR. Nature (London) 1999, 397: 121 -
6i
Balzani V.Ceroni P.Gestermann S.Kauffmann C.Gorka M.Vögtle F. Chem. Commun. 2000, 853 -
6j
Segura JL.Martín N. J. Mater. Chem. 2000, 10: 2403 -
6k
Fechtenkötter A.Tchebotareva N.Watson M.Müllen K. Tetrahedron 2001, 57: 3769 -
6l
Kwok CC.Wong MS. Macromolecules 2001, 34: 6821 -
6m
Li CL.Shien SJ.Lin SC.Liu RS. Org. Lett. 2003, 5: 1131 -
6n
Takahashi M.Odagi T.Tomita H.Oshikawa T.Yamashita M. Tetrahedron Lett. 2003, 44: 2455 -
6o
Kan Y.Wang L.Duan L.Hu Y.Wu G.Qiu Y. Appl. Phys. Lett. 2004, 84: 1513 -
6p
Wex B.Kaafarani BR.Schroeder R.Majewski LA.Burckel P.Grell M.Neckers DC. J. Mater. Chem. 2006, 16: 1121 -
6q
Padmaperuma AB.Sapochak LS.Burrows PE. Chem. Mater. 2006, 18: 2389 -
6r
Saito G.Yoshida Y. Bull. Chem. Soc. Jpn. 2007, 80: 1 -
7a
Fischer EO.Dötz KH. J. Organomet. Chem. 1972, 36: C4 -
7b
Connor JA.Rose PD.Turner RM. J. Organomet. Chem. 1973, 55: 111 -
7c
Connor JA.Day JP.Turner RM. J. Chem. Soc., Dalton Trans. 1976, 108 -
7d
Nakamura E.Tanaka K.Aoki S. J. Am. Chem. Soc. 1992, 114: 9715 -
7e
Mak CC.Chan KS. J. Chem. Soc., Perkin Trans. 1 1993, 2143 -
7f
Mak CC.Tse MK.Chan KS. J. Org. Chem. 1994, 59: 3585 -
7g
Scharrer E.Brookhart M. J. Organomet. Chem. 1995, 497: 61 -
7h
Merlic CA.Albaneze J. Tetrahedron Lett. 1995, 36: 1007 -
7i
Parisi M.Solo A.Wulff WD.Guzei IA.Rheingold AL. Organometallics 1998, 17: 3696 -
7j
Takeda T.Nozaki N.Fujiwara T. Tetrahedron Lett. 1998, 39: 3533 -
7k
Iwasawa N.Saitou M.Kusama H. J. Organomet. Chem. 2001, 617: 741 -
7l
Buck RT.Coe DM.Drysdale MJ.Ferris L.Haigh D.Moody CJ.Pearson ND.Sanghera JB. Tetrahedron: Asymmetry 2003, 14: 791 -
8a
The titanacycle 6 was isolated by column chromatography over alumina gel (hexane-EtOAc, 98:2) under N2, mp 85-87 °C. 1H NMR (300 MHz, CDCl3): δ = 4.88 (s, 2 H), 5.88 (s, 5 H), 6.44 (s, 5 H), 7.03-7.28 (m, 14 H). 13C NMR (75 MHz, CDCl3): δ = 58.7, 114.6, 115.8, 123.0, 124.1, 125.0, 125.6, 128.7, 142.4, 146.1. IR (KBr): ν = 3057, 2914, 1579, 1476, 1439, 1085, 1022, 824, 739, 690 cm-1.
Lappert and co-workers reported the preparation of 2-titanaindane [8b] and meso-1,3-bis(trimethylsilyl)-2-titanaindane [8c] complexes. The NMR signals of the Cp rings of the latter titanacycle occur as two singlets at δ = 4.46 and 5.23 ppm. The spectrum of 6 shows the protons of two Cp rings as two singlets at δ = 5.88 and 6.44 ppm, suggesting that 6 has the meso configuration. -
8b
Bristow GS.Lappert MF.Martin TR.Atwood JL.Hunter WF. J. Chem. Soc., Dalton Trans. 1984, 399 -
8c
Lappert MF.Raston CL.Skelton BW.White AH. J. Chem. Soc., Dalton Trans. 1984, 893 - For recent examples, see:
-
10a
Seferos DS.Banach DA.Alcantar NA.Israelachvili JN.Bazan GC. J. Org. Chem. 2004, 69: 1110 -
10b
Liu Z.-Q.Fang Q.Cao D.-X.Wang D.Xu G.-B. Org. Lett. 2004, 6: 2933 -
10c
Langa F.Gomez-Escalonilla MJ.Rueff J.-M.Figueira Duarte TM.Nierengarten J.-F.Palermo V.Samorì P.Rio Y.Accorsi G.Armaroli N. Chem. Eur. J. 2005, 11: 4405 -
10d
Kim HM.Yang WJ.Kim CH.Park W.-H.Jeon S.-J.Cho BR. Chem. Eur. J. 2005, 11: 6386 -
10e
Woo HY.Liu B.Kohler B.Korystov D.Mikhailovsky A.Bazan GC. J. Am. Chem. Soc. 2005, 127: 14721 -
10f
Mcllroy SP.Cló E.Nikolajsen L.Frederiksen PK.Nielsen CB.Mikkelsen KV.Gothelf KV.Ogilby PR. J. Org. Chem. 2005, 70: 1134 -
10g
Yao S.Belfield KD. J. Org. Chem. 2005, 70: 5126 -
10h
Hwu JR.Chuang K.-S.Chuang SH.Tsay S.-C. Org. Lett. 2005, 7: 1545 -
10i
Stuhr-Hansen N.Sørensen JK.Moth-Poulsen K.Christensen JB.Bjørnholm T.Nielsen MB. Tetrahedron 2005, 61: 12288 -
10j
Kim O.-K.Je J.Melinger JS. J. Am. Chem. Soc. 2006, 128: 4532 -
10k
Iwaura R.Hoeben FJM.Masuda M.Schenning APHJ.Meijer EW.Shimizu T. J. Am. Chem. Soc. 2006, 128: 13298 -
11a
Honor L.Hoffmann H.Klink W.Ertel H.Toscano VG. Chem. Ber. 1962, 95: 581 -
11b
Kauffman JM.Moyna G. J. Org. Chem. 2003, 68: 839 -
11c
Plater MJ.Jackson T. Tetrahedron 2003, 59: 4673 -
12a
Itami K.Tonogaki K.Ohashi Y.Yoshida J. Org. Lett. 2004, 6: 4093 -
12b
Itami K.Ohashi Y.Yoshida J. J. Org. Chem. 2005, 70: 2778 -
12c
Itami K.Yoshida J. Bull. Chem. Soc. Jpn. 2006, 79: 811 -
12d
Itami K.Yoshida J. Chem. Eur. J. 2006, 12: 3966
References and Notes
General Procedure
Cp2TiCl2 (398 mg, 1.6 mmol), magnesium turnings (43 mg, 1.76 mmol), and finely powdered 4 Å MS (128 mg) were placed in a flask and dried by heating with a heat gun in vacuo (2-3 mmHg). After cooling, THF (2.4 mL) and P(OEt)3 (0.55 mL, 3.2 mmol) were added successively with stirring under argon. During the addition, the reaction mixture was cooled in a water bath so that the temperature was maintained between 20 °C and 30 °C. After stirring for 3 h at 25 °C, a THF (1.0 mL) solution of the thioacetal 3c (108 mg, 0.2 mmol) was added. Then, a THF (4.0 mL) solution of 7b (261 mg, 0.8 mmol) was added dropwise over 10 min and the reaction mixture was stirred for 3 h under reflux. The reaction was quenched by addition of 1 M NaOH and the insoluble materials were filtered off through Celite® and washed with CHCl3. The layers were separated, and the aqueous layer was extracted with CHCl3. After the combined organic extracts were dried with Na2SO4 and concentrated, the remaining triethyl phosphate, formed by the oxidation of triethyl phosphite, was removed by azeotropic distillation with MeOH. Purification of the residue by PTLC on silica gel (hexane-CHCl3, 96:4) gave 8h as yellow crystals (102 mg, 64%), mp 130-132 °C. 1H NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.4 Hz, 6 H), 0.99 (t, J = 7.4 Hz, 6 H), 1.41-1.59 (m, 8 H), 1.67-1.85 (m, 8 H), 3.94 (t, J = 6.2 Hz, 4 H), 3.96 (t, J = 6.1 Hz, 4 H), 6.70 (s, 2 H), 6.75-6.89 (m, 12 H), 7.07 (d, J = 8.4 Hz, 4 H), 7.20 (d, J = 8.4 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 13.9, 19.2, 19.3, 31.3, 31.4, 67.6, 67.7, 114.1, 114.4, 125.8, 128.8, 129.0, 131.6, 136.0, 136.4, 141.6, 158.5, 158.8. IR (KBr): ν = 2956, 2932, 2871, 1604, 1570, 1509, 1467, 1390, 1284, 1247, 1175, 1146, 1111, 1070, 1027, 1010, 973, 834, 813, 617 cm-1. Anal. Calcd for C50H58O4: C, 83.06; H, 8.09. Found: C, 82.82; H, 8.12.