References and Notes
1a
Takeda T.
Bull. Chem. Soc. Jpn.
2005,
78:
195
1b
Takeda T.
Chem. Rec.
2007,
7:
24
2
Takeda T.
Tsubouchi A. In
Modern Carbonyl Olefination
Takeda T.
Wiley-VCH;
Weinheim:
2004.
p.151
3a
Anderson DM.
Bristow GS.
Hitchcock PB.
Jasim HA.
Lappert MF.
Skelton BW.
J. Chem. Soc., Dalton Trans.
1987,
2843
3b
Fuchibe K.
Iwasawa N.
Chem. Eur. J.
2003,
9:
905
3c
Lalov AV.
Egorov MP.
Nefedov OM.
Cherkasov VK.
Ermolaev NL.
Piskunov AV.
Russ. Chem. Bull.
2005,
54:
807
4
Martin HC.
James NH.
Aitken J.
Gaunt JA.
Adams H.
Haynes A.
Organometallics
2003,
22:
4451
5a
Dötz KH.
Tomuschat P.
Nieger M.
Chem. Ber./Recl.
1997,
130:
1605
5b
Tomuschat P.
Kröner L.
Steckhan E.
Nieger M.
Dötz KH.
Chem. Eur. J.
1999,
5:
700
5c
Fernández I.
Sierra MA.
Mancheño MJ.
Gómez-Gallego M.
Ricart S.
Organometallics
2001,
20:
4304
For examples, see:
6a
Meier H.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1399
6b
Adam D.
Closs F.
Frey T.
Funhoff D.
Haarer D.
Ringsdorf H.
Schuhmacher P.
Siemensmeyer K.
Phys. Rev. Lett.
1993,
70:
457
6c
Adam D.
Schuhmacher P.
Simmerer J.
Häussling L.
Siemensmeyer K.
Etzbach KH.
Ringsdorf H.
Haarer D.
Nature (London)
1994,
371:
141
6d
Tanaka H.
Tokito S.
Taga Y.
Okada A.
Chem. Commun.
1996,
2175
6e
Jiang D.-L.
Aida T.
Nature (London)
1997,
388:
454
6f
Kraft A.
Grimsdale AC.
Holmes AB.
Angew. Chem. Int. Ed.
1998,
37:
402
6g
Martin RE.
Diederich F.
Angew. Chem. Int. Ed.
1999,
38:
1350
6h
Friend RH.
Gymer RW.
Holmes AB.
Burroughes JH.
Marks RN.
Taliani C.
Bradley DDC.
Dos Santos DA.
Brédas JL.
Lögdlund M.
Salaneck WR.
Nature (London)
1999,
397:
121
6i
Balzani V.
Ceroni P.
Gestermann S.
Kauffmann C.
Gorka M.
Vögtle F.
Chem. Commun.
2000,
853
6j
Segura JL.
Martín N.
J. Mater. Chem.
2000,
10:
2403
6k
Fechtenkötter A.
Tchebotareva N.
Watson M.
Müllen K.
Tetrahedron
2001,
57:
3769
6l
Kwok CC.
Wong MS.
Macromolecules
2001,
34:
6821
6m
Li CL.
Shien SJ.
Lin SC.
Liu RS.
Org. Lett.
2003,
5:
1131
6n
Takahashi M.
Odagi T.
Tomita H.
Oshikawa T.
Yamashita M.
Tetrahedron Lett.
2003,
44:
2455
6o
Kan Y.
Wang L.
Duan L.
Hu Y.
Wu G.
Qiu Y.
Appl. Phys. Lett.
2004,
84:
1513
6p
Wex B.
Kaafarani BR.
Schroeder R.
Majewski LA.
Burckel P.
Grell M.
Neckers DC.
J. Mater. Chem.
2006,
16:
1121
6q
Padmaperuma AB.
Sapochak LS.
Burrows PE.
Chem. Mater.
2006,
18:
2389
6r
Saito G.
Yoshida Y.
Bull. Chem. Soc. Jpn.
2007,
80:
1
7a
Fischer EO.
Dötz KH.
J. Organomet. Chem.
1972,
36:
C4
7b
Connor JA.
Rose PD.
Turner RM.
J. Organomet. Chem.
1973,
55:
111
7c
Connor JA.
Day JP.
Turner RM.
J. Chem. Soc., Dalton Trans.
1976,
108
7d
Nakamura E.
Tanaka K.
Aoki S.
J. Am. Chem. Soc.
1992,
114:
9715
7e
Mak CC.
Chan KS.
J. Chem. Soc., Perkin Trans. 1
1993,
2143
7f
Mak CC.
Tse MK.
Chan KS.
J. Org. Chem.
1994,
59:
3585
7g
Scharrer E.
Brookhart M.
J. Organomet. Chem.
1995,
497:
61
7h
Merlic CA.
Albaneze J.
Tetrahedron Lett.
1995,
36:
1007
7i
Parisi M.
Solo A.
Wulff WD.
Guzei IA.
Rheingold AL.
Organometallics
1998,
17:
3696
7j
Takeda T.
Nozaki N.
Fujiwara T.
Tetrahedron Lett.
1998,
39:
3533
7k
Iwasawa N.
Saitou M.
Kusama H.
J. Organomet. Chem.
2001,
617:
741
7l
Buck RT.
Coe DM.
Drysdale MJ.
Ferris L.
Haigh D.
Moody CJ.
Pearson ND.
Sanghera JB.
Tetrahedron: Asymmetry
2003,
14:
791
8a The titanacycle 6 was isolated by column chromatography over alumina gel (hexane-EtOAc, 98:2) under N2, mp 85-87 °C. 1H NMR (300 MHz, CDCl3): δ = 4.88 (s, 2 H), 5.88 (s, 5 H), 6.44 (s, 5 H), 7.03-7.28 (m, 14 H). 13C NMR (75 MHz, CDCl3): δ = 58.7, 114.6, 115.8, 123.0, 124.1, 125.0, 125.6, 128.7, 142.4, 146.1. IR (KBr): ν = 3057, 2914, 1579, 1476, 1439, 1085, 1022, 824, 739, 690 cm-1.
Lappert and co-workers reported the preparation of 2-titanaindane
[8b]
and meso-1,3-bis(trimethylsilyl)-2-titanaindane
[8c]
complexes. The NMR signals of the Cp rings of the latter titanacycle occur as two singlets at δ = 4.46 and 5.23 ppm. The spectrum of 6 shows the protons of two Cp rings as two singlets at δ = 5.88 and 6.44 ppm, suggesting that 6 has the meso configuration.
8b
Bristow GS.
Lappert MF.
Martin TR.
Atwood JL.
Hunter WF.
J. Chem. Soc., Dalton Trans.
1984,
399
8c
Lappert MF.
Raston CL.
Skelton BW.
White AH.
J. Chem. Soc., Dalton Trans.
1984,
893
9
General Procedure
Cp2TiCl2 (398 mg, 1.6 mmol), magnesium turnings (43 mg, 1.76 mmol), and finely powdered 4 Å MS (128 mg) were placed in a flask and dried by heating with a heat gun in vacuo (2-3 mmHg). After cooling, THF (2.4 mL) and P(OEt)3 (0.55 mL, 3.2 mmol) were added successively with stirring under argon. During the addition, the reaction mixture was cooled in a water bath so that the temperature was maintained between 20 °C and 30 °C. After stirring for 3 h at 25 °C, a THF (1.0 mL) solution of the thioacetal 3c (108 mg, 0.2 mmol) was added. Then, a THF (4.0 mL) solution of 7b (261 mg, 0.8 mmol) was added dropwise over 10 min and the reaction mixture was stirred for 3 h under reflux. The reaction was quenched by addition of 1 M NaOH and the insoluble materials were filtered off through Celite® and washed with CHCl3. The layers were separated, and the aqueous layer was extracted with CHCl3. After the combined organic extracts were dried with Na2SO4 and concentrated, the remaining triethyl phosphate, formed by the oxidation of triethyl phosphite, was removed by azeotropic distillation with MeOH. Purification of the residue by PTLC on silica gel (hexane-CHCl3, 96:4) gave 8h as yellow crystals (102 mg, 64%), mp 130-132 °C. 1H NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.4 Hz, 6 H), 0.99 (t, J = 7.4 Hz, 6 H), 1.41-1.59 (m, 8 H), 1.67-1.85 (m, 8 H), 3.94 (t, J = 6.2 Hz, 4 H), 3.96 (t, J = 6.1 Hz, 4 H), 6.70 (s, 2 H), 6.75-6.89 (m, 12 H), 7.07 (d, J = 8.4 Hz, 4 H), 7.20 (d, J = 8.4 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 13.9, 19.2, 19.3, 31.3, 31.4, 67.6, 67.7, 114.1, 114.4, 125.8, 128.8, 129.0, 131.6, 136.0, 136.4, 141.6, 158.5, 158.8. IR (KBr): ν = 2956, 2932, 2871, 1604, 1570, 1509, 1467, 1390, 1284, 1247, 1175, 1146, 1111, 1070, 1027, 1010, 973, 834, 813, 617 cm-1. Anal. Calcd for C50H58O4: C, 83.06; H, 8.09. Found: C, 82.82; H, 8.12.
For recent examples, see:
10a
Seferos DS.
Banach DA.
Alcantar NA.
Israelachvili JN.
Bazan GC.
J. Org. Chem.
2004,
69:
1110
10b
Liu Z.-Q.
Fang Q.
Cao D.-X.
Wang D.
Xu G.-B.
Org. Lett.
2004,
6:
2933
10c
Langa F.
Gomez-Escalonilla MJ.
Rueff J.-M.
Figueira Duarte TM.
Nierengarten J.-F.
Palermo V.
Samorì P.
Rio Y.
Accorsi G.
Armaroli N.
Chem. Eur. J.
2005,
11:
4405
10d
Kim HM.
Yang WJ.
Kim CH.
Park W.-H.
Jeon S.-J.
Cho BR.
Chem. Eur. J.
2005,
11:
6386
10e
Woo HY.
Liu B.
Kohler B.
Korystov D.
Mikhailovsky A.
Bazan GC.
J. Am. Chem. Soc.
2005,
127:
14721
10f
Mcllroy SP.
Cló E.
Nikolajsen L.
Frederiksen PK.
Nielsen CB.
Mikkelsen KV.
Gothelf KV.
Ogilby PR.
J. Org. Chem.
2005,
70:
1134
10g
Yao S.
Belfield KD.
J. Org. Chem.
2005,
70:
5126
10h
Hwu JR.
Chuang K.-S.
Chuang SH.
Tsay S.-C.
Org. Lett.
2005,
7:
1545
10i
Stuhr-Hansen N.
Sørensen JK.
Moth-Poulsen K.
Christensen JB.
Bjørnholm T.
Nielsen MB.
Tetrahedron
2005,
61:
12288
10j
Kim O.-K.
Je J.
Melinger JS.
J. Am. Chem. Soc.
2006,
128:
4532
10k
Iwaura R.
Hoeben FJM.
Masuda M.
Schenning APHJ.
Meijer EW.
Shimizu T.
J. Am. Chem. Soc.
2006,
128:
13298
11a
Honor L.
Hoffmann H.
Klink W.
Ertel H.
Toscano VG.
Chem. Ber.
1962,
95:
581
11b
Kauffman JM.
Moyna G.
J. Org. Chem.
2003,
68:
839
11c
Plater MJ.
Jackson T.
Tetrahedron
2003,
59:
4673
12a
Itami K.
Tonogaki K.
Ohashi Y.
Yoshida J.
Org. Lett.
2004,
6:
4093
12b
Itami K.
Ohashi Y.
Yoshida J.
J. Org. Chem.
2005,
70:
2778
12c
Itami K.
Yoshida J.
Bull. Chem. Soc. Jpn.
2006,
79:
811
12d
Itami K.
Yoshida J.
Chem. Eur. J.
2006,
12:
3966