Subscribe to RSS
DOI: 10.1055/s-2007-984903
Efficient Formation and Cleavage of Benzylidene Acetals by Sodium Hydrogen Sulfate Supported on Silica Gel
Publication History
Publication Date:
17 July 2007 (online)
Abstract
NaHSO4·SiO2 was used as an efficient heterogeneous catalyst for both the formation and the cleavage of benzylidene acetals. This catalyst is compatible with many functional or protective groups. Under different solvent systems, either the formation or the cleavage of benzylidene acetals was carried out smoothly in excellent yields and with good chemoselectivity.
Key words
sodium hydrogen sulfate supported on silica gel - protection - deprotection - benzylidene acetals - carbohydrate
-
1a
Wuts PGM. Greene’s Protecting Groups in Organic Synthesis 4th ed.: John Wiley and Sons; New York: 2007. -
1b
Wang C.-C.Lee J.-C.Luo S.-Y.Kulkarni SS.Huang Y.-W.Lee C.-C.Chang K.-L.Hung S.-C. Nature (London) 2007, 446: 896 -
1c
Wang PG. Nat. Chem. Biol. 2007, 3: 309 -
2a
Bhattacharjee SS.Gorin PAJ. Can. J. Chem. 1969, 47: 1195 -
2b
Garegg PJ. Pure Appl. Chem. 1984, 56: 845 -
2c
Mikami T.Asano H.Mitsunobu O. Chem. Lett. 1987, 2033 -
2d
de Ninno MP.Etienne JB.Duplantier KC. Tetrahedron Lett. 1995, 36: 669 -
2e
Liptak A.Imre J.Hangi J.Nanasi P.Neszmelyi A. Tetrahedron 1982, 38: 3721 -
2f
Shie C.-R.Tzeng Z.-H.Kulkarni SS.Uang B.-J.Hsu C.-Y.Hung S.-C. Angew. Chem. Int. Ed. 2005, 44: 1665 ; and references therein -
3a
Hanessian S.Plessas NR. J. Org. Chem. 1969, 34: 1035 -
3b
Banaszek A.Pakulski Z.Zamojski A. Carbohydr. Res. 1995, 279: 173 -
3c
Boivin J.Monneret C.Pais M. Tetrahedron 1981, 37: 4219 -
3d
Hanessian S. Adv. Chem. Ser. 1968, 74: 159 - 4
Fletcher HG. Methods Carbohydr. Chem. 1963, 2: 307 - 5
Carman RM.Kibby JJ. Aust. J. Chem. 1976, 29: 1761 - 6
McGowan DA.Berchtold GA. J. Am. Chem. Soc. 1982, 104: 7036 -
7a
Kenne L.Lindberg B. Methods Carbohydr. Chem. 1980, 8: 317 -
7b
Russell RN.Weigel TM.Han O.Liu H.-W. Carbohydr. Res. 1990, 201: 95 -
8a
Albert R.Dax K.Pleschko R.Stütz A. Carbohydr. Res. 1985, 137: 282 -
8b
Yamanoi T.Akiyama T.Ishida E.Abe H.Amemiya M.Inazu T. Chem. Lett. 1989, 335 -
8c
Crimmins MT.Hollis JWG.Lever GJ. Tetrahedron Lett. 1987, 28: 3647 -
8d
Morimoto Y.Mikami A.Kuwabe S.-I.Shirahama H. Tetrahedron Lett. 1991, 32: 2909 - 9
Han SY.Joullié MM.Petasis NA.Bigorra J.Cobera J.Font J.Ortuño RM. Tetrahedron 1993, 49: 349 -
10a
Mukhopadhyay B.Russell DA.Field RA. Carbohydr. Res. 2005, 340: 1075 -
10b
Mukhopadhyay B. Tetrahedron Lett. 2006, 47: 4337 -
11a
Peat S.Wiggins LF. J. Chem. Soc. 1938, 1088 -
11b
Smith AB.Hale KJ. Tetrahedron Lett. 1989, 30: 1037 -
11c
Hartung WH.Simonoff R. Org. React. 1953, 7: 263 -
12a
Hann RM.Richtmyer NK.Diehl HW.Hudson CS. J. Am. Chem. Soc. 1950, 72: 561 -
12b
Smith M.Rammler DH.Goldberg IH.Khorana HG. J. Am. Chem. Soc. 1962, 84: 430 -
12c
Bonner TG.Bourne EJ.McNally S. J. Chem. Soc. 1960, 2929 -
12d
Szarek WA.Zamojski A.Tiwari KN.Ison ER. Tetrahedron Lett. 1986, 27: 3827 -
12e
Park MH.Takeda R.Nakanishi K. Tetrahedron Lett. 1987, 28: 3823 -
13a
Mairanovsky VG. Angew. Chem., Int. Ed. Engl. 1976, 15: 281 -
13b
Agnihotri G.Misra AK. Tetrahetron Lett. 2006, 47: 3653 -
14a
Breton GW. J. Org. Chem. 1997, 62: 8952 -
14b
Method for Preparation of NaHSO 4 ·SiO 2
To a solution of 4.14 g (0.03 mol) of NaHSO4·H2O in 20 mL of H2O in a 100 mL round-bottomed flask was added 10.0 g of SiO2 (column chromatographic grade, 60 Å, 200-300 mesh). Then, H2O was removed under reduced pressure, and a free-flowing white solid was obtained. This reagent was further dried by placing the beaker in an oven maintained at 105 °C for at least 10 h prior to use. -
15a
Mahender G.Ramu R.Ramesh C.Das B. Chem. Lett. 2003, 32: 734 -
15b
Ramesh C.Ravindranath N.Das B. J. Org. Chem. 2003, 68: 7101 -
15c
Ramesh C.Mahender G.Ravindranath N.Das B. Tetrahedron Lett. 2003, 44: 1465 -
15d
Ravindranath N.Ramesh C.Reddy M.Das B. Adv. Synth. Catal. 2003, 345: 1207 -
15e
Das B.Mahender G.Kumar VS.Chowdhury N. Tetrahedron Lett. 2004, 45: 6709 -
15f
Das B.Reddy KR.Thirupathi P. Tetrahedron Lett. 2006, 47: 5855 - 16
Ramu R.Nath N.Reddy M.Das B. Synth. Commun. 2004, 34: 3135 -
17a
Zolfigol MA.Madrakian E.Ghaemi E. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001, 40: 1191 -
17b
Zolfigol MA.Madrakian E.Ghaemi E. Molecules 2001, 6: 614 -
17c
Zolfigol MA.Madrakian E.Ghaemi E.Kiani M. Synth. Commun. 2000, 11: 2057 -
17d
Shirini F.Zolfigol MA.Torabi S. Lett. Org. Chem. 2005, 2: 544 -
17e
Damavandi JA.Zolfigol MA.Karimi B. Synth. Commun. 2001, 31: 3183 -
17f
Zolfigol MA.Sadeghi MM.Mohammadpoor-Baltork I.Ghorbani Choghamarani A.Taqian-nasab A. Asian J. Chem. 2001, 13: 887 -
17g
Das B.Venkateswarlu K.Mahender G.Mahender L. Tetrahedron Lett. 2005, 46: 3041 -
17h
Das B.Banerjee J.Ravindranath N. Tetrahedron 2004, 60: 8357 -
17i
Ramesh C.Banerjee J.Pal R.Das B. Adv. Synth. Catal. 2003, 345: 557 -
17j
Das B.Banerjee J. Chem. Lett. 2004, 33: 960 -
17k
Zhuang W.Jørgensen KA. Chem. Commun. 2002, 1336 - 19
Rehnberg N.Magnusson G. J. Org. Chem. 1990, 55: 5467 - 20
Cumpstey I.Chayajarus K.Fairbanks AJ.Redgrave AJ.Seward CMP. Tetrahedron: Asymmetry 2004, 15: 3207 - 22
Fan Q.-H.Ni N.-T.Li Q.Zhang L.-H.Ye X.-S. Org. Lett. 2006, 8: 1007 - 23
Marco-Contelles J.Molina MT.Anjum S. Chem. Rev. 2004, 104: 2857 - 24
Larock RC. Comprehensive Organic Transformations 2rd ed.: John Wiley and Sons; New York: 1999. p.1019
References and Notes
General Procedure for the Formation of Benzylidene Acetals
To a stirred solution of the glycoside substrate (100 mg) and benzaldehyde dimethyl acetal (1.5 mmol) in MeCN (10 mL) was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C for 10 h prior to use) at r.t. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with Et3N (0.2 mL). The catalyst was filtered off through a plug of Celite, and the filtrate was removed under reduced pressure to yield the product. Although the product was pure enough, analytical samples were prepared by passing the crude reaction product through a short column of silica gel using PE-EtOAc as eluent.
Compound 16: colorless solids, mp 108-109 °C. 1H NMR (500 MHz, CDCl3): δ = 8.10-8.08 (m, 2 H), 7.61-7.57 (m, 1 H), 7.49-7.44 (m, 4 H), 7.37-7.33 (m, 3 H), 6.02-5.94 (m, 1 H), 5.53 (s, 1 H), 5.39-5.35 (m, 1 H), 5.26-5.23 (m, 1 H), 4.98 (dd, J = 3.5, 10.5 Hz, 1 H), 4.52-4.46 (m, 3 H), 4.38-4.35 (dd, J = 2.0, 12.5 Hz, 1 H), 4.22-4.17 (m, 1 H), 4.13-4.08 (m, 2 H), 3.55 (d, J = 1.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.0, 137.5, 133.50, 133.45, 130.0, 129.3, 128.9, 128.5, 128.1, 126.1, 117.9, 101.0, 100.7, 72.8, 72.7, 70.3, 68.9, 66.4, 60.6. LRMS-FAB: m/z calcd for C23H27N4O6 [M + NH4
+]: 455; found: 455. Anal. Calcd for C23H23N3O6: 63.15; H, 5.30; N, 9.61, Found: C, 62.80; H, 5.47; N, 9.57.
General Procedure for the Cleavage of Benzylidene Acetals
To a stirred solution of the 4,6-O-benzylidene-glycopyrano-side (100 mg) in a mixed solvent of CH2Cl2 and MeOH (or i-PrOH; v/v 4:1, 10 mL) was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C for 10 h prior to use) at r.t. After completion of the reaction (monitored by TLC), the mixture was filtered through a Celite bed and the filtrate was con-centrated. The residue was purified by column chromatog-raphy on silica gel using PE-EtOAc as eluent to afford the pure product. If the acid-sensitive functional groups exist, it is necessary to quench the reaction with Et3N (0.2 mL) after completion of the reaction.
Compound 19: white solids, mp 135-136 °C. 1H NMR (300 MHz, CDCl3): δ = 7.45 (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 8.7 Hz, 2 H), 7.27-7.24 (m, 2 H), 7.10 (d, J = 8.1 Hz, 2 H), 6.91-6.85 (m, 4 H), 4.76 (d, J = 10.2 Hz, 1 H), 4.65 (d, J = 12.6 Hz, 3 H), 4.56 (d, J = 12.9 Hz, 1 H), 3.99-3.93 (m, 2 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.79-3.72 (m, 1 H), 3.67 (t, J = 9.3 Hz, 1 H), 3.54 (dd, J = 3.3, 9.3 Hz, 1 H), 3.46-3.44 (m, 1 H), 2.58 (br s, 1 H), 2.32 (s, 3 H), 2.01 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 137.8, 132.6, 130.3, 129.9, 129.7, 129.6, 113.9, 113.8, 87.8, 82.1, 77.9, 75.4, 72.0, 69.4, 67.4, 62.8, 55.3. 21.1. ESI-HRMS: m/z calcd for C29H35O7S [M + H+]: 527.2098; found: 527.2104.