References and Notes
<A NAME="RW07507ST-1A">1a</A>
Wuts PGM.
Greene’s Protecting Groups in Organic Synthesis
4th ed.:
John Wiley and Sons;
New York:
2007.
<A NAME="RW07507ST-1B">1b</A>
Wang C.-C.
Lee J.-C.
Luo S.-Y.
Kulkarni SS.
Huang Y.-W.
Lee C.-C.
Chang K.-L.
Hung S.-C.
Nature (London)
2007,
446:
896
<A NAME="RW07507ST-1C">1c</A>
Wang PG.
Nat. Chem. Biol.
2007,
3:
309
<A NAME="RW07507ST-2A">2a</A>
Bhattacharjee SS.
Gorin PAJ.
Can. J. Chem.
1969,
47:
1195
<A NAME="RW07507ST-2B">2b</A>
Garegg PJ.
Pure Appl. Chem.
1984,
56:
845
<A NAME="RW07507ST-2C">2c</A>
Mikami T.
Asano H.
Mitsunobu O.
Chem. Lett.
1987,
2033
<A NAME="RW07507ST-2D">2d</A>
de Ninno MP.
Etienne JB.
Duplantier KC.
Tetrahedron Lett.
1995,
36:
669
<A NAME="RW07507ST-2E">2e</A>
Liptak A.
Imre J.
Hangi J.
Nanasi P.
Neszmelyi A.
Tetrahedron
1982,
38:
3721
<A NAME="RW07507ST-2F">2f</A>
Shie C.-R.
Tzeng Z.-H.
Kulkarni SS.
Uang B.-J.
Hsu C.-Y.
Hung S.-C.
Angew. Chem. Int. Ed.
2005,
44:
1665 ; and references therein
<A NAME="RW07507ST-3A">3a</A>
Hanessian S.
Plessas NR.
J. Org. Chem.
1969,
34:
1035
<A NAME="RW07507ST-3B">3b</A>
Banaszek A.
Pakulski Z.
Zamojski A.
Carbohydr. Res.
1995,
279:
173
<A NAME="RW07507ST-3C">3c</A>
Boivin J.
Monneret C.
Pais M.
Tetrahedron
1981,
37:
4219
<A NAME="RW07507ST-3D">3d</A>
Hanessian S.
Adv. Chem. Ser.
1968,
74:
159
<A NAME="RW07507ST-4">4</A>
Fletcher HG.
Methods Carbohydr. Chem.
1963,
2:
307
<A NAME="RW07507ST-5">5</A>
Carman RM.
Kibby JJ.
Aust. J. Chem.
1976,
29:
1761
<A NAME="RW07507ST-6">6</A>
McGowan DA.
Berchtold GA.
J. Am. Chem. Soc.
1982,
104:
7036
<A NAME="RW07507ST-7A">7a</A>
Kenne L.
Lindberg B.
Methods Carbohydr. Chem.
1980,
8:
317
<A NAME="RW07507ST-7B">7b</A>
Russell RN.
Weigel TM.
Han O.
Liu H.-W.
Carbohydr. Res.
1990,
201:
95
<A NAME="RW07507ST-8A">8a</A>
Albert R.
Dax K.
Pleschko R.
Stütz A.
Carbohydr. Res.
1985,
137:
282
<A NAME="RW07507ST-8B">8b</A>
Yamanoi T.
Akiyama T.
Ishida E.
Abe H.
Amemiya M.
Inazu T.
Chem. Lett.
1989,
335
<A NAME="RW07507ST-8C">8c</A>
Crimmins MT.
Hollis JWG.
Lever GJ.
Tetrahedron Lett.
1987,
28:
3647
<A NAME="RW07507ST-8D">8d</A>
Morimoto Y.
Mikami A.
Kuwabe S.-I.
Shirahama H.
Tetrahedron Lett.
1991,
32:
2909
<A NAME="RW07507ST-9">9</A>
Han SY.
Joullié MM.
Petasis NA.
Bigorra J.
Cobera J.
Font J.
Ortuño RM.
Tetrahedron
1993,
49:
349
<A NAME="RW07507ST-10A">10a</A>
Mukhopadhyay B.
Russell DA.
Field RA.
Carbohydr. Res.
2005,
340:
1075
<A NAME="RW07507ST-10B">10b</A>
Mukhopadhyay B.
Tetrahedron Lett.
2006,
47:
4337
<A NAME="RW07507ST-11A">11a</A>
Peat S.
Wiggins LF.
J. Chem. Soc.
1938,
1088
<A NAME="RW07507ST-11B">11b</A>
Smith AB.
Hale KJ.
Tetrahedron Lett.
1989,
30:
1037
<A NAME="RW07507ST-11C">11c</A>
Hartung WH.
Simonoff R.
Org. React.
1953,
7:
263
<A NAME="RW07507ST-12A">12a</A>
Hann RM.
Richtmyer NK.
Diehl HW.
Hudson CS.
J. Am. Chem. Soc.
1950,
72:
561
<A NAME="RW07507ST-12B">12b</A>
Smith M.
Rammler DH.
Goldberg IH.
Khorana HG.
J. Am. Chem. Soc.
1962,
84:
430
<A NAME="RW07507ST-12C">12c</A>
Bonner TG.
Bourne EJ.
McNally S.
J. Chem. Soc.
1960,
2929
<A NAME="RW07507ST-12D">12d</A>
Szarek WA.
Zamojski A.
Tiwari KN.
Ison ER.
Tetrahedron Lett.
1986,
27:
3827
<A NAME="RW07507ST-12E">12e</A>
Park MH.
Takeda R.
Nakanishi K.
Tetrahedron Lett.
1987,
28:
3823
<A NAME="RW07507ST-13A">13a</A>
Mairanovsky VG.
Angew. Chem., Int. Ed. Engl.
1976,
15:
281
<A NAME="RW07507ST-13B">13b</A>
Agnihotri G.
Misra AK.
Tetrahetron Lett.
2006,
47:
3653
<A NAME="RW07507ST-14A">14a</A>
Breton GW.
J. Org. Chem.
1997,
62:
8952
<A NAME="RW07507ST-14B">14b</A>
Method for Preparation of NaHSO
4
·SiO
2
To a solution of 4.14 g (0.03 mol) of NaHSO4·H2O in 20 mL of H2O in a 100 mL round-bottomed flask was added 10.0 g of SiO2 (column chromatographic grade, 60 Å, 200-300 mesh). Then, H2O was removed under reduced pressure, and a free-flowing white solid was obtained.
This reagent was further dried by placing the beaker in an oven maintained at 105
°C for at least 10 h prior to use.
<A NAME="RW07507ST-15A">15a</A>
Mahender G.
Ramu R.
Ramesh C.
Das B.
Chem. Lett.
2003,
32:
734
<A NAME="RW07507ST-15B">15b</A>
Ramesh C.
Ravindranath N.
Das B.
J. Org. Chem.
2003,
68:
7101
<A NAME="RW07507ST-15C">15c</A>
Ramesh C.
Mahender G.
Ravindranath N.
Das B.
Tetrahedron Lett.
2003,
44:
1465
<A NAME="RW07507ST-15D">15d</A>
Ravindranath N.
Ramesh C.
Reddy M.
Das B.
Adv. Synth. Catal.
2003,
345:
1207
<A NAME="RW07507ST-15E">15e</A>
Das B.
Mahender G.
Kumar VS.
Chowdhury N.
Tetrahedron Lett.
2004,
45:
6709
<A NAME="RW07507ST-15F">15f</A>
Das B.
Reddy KR.
Thirupathi P.
Tetrahedron Lett.
2006,
47:
5855
<A NAME="RW07507ST-16">16</A>
Ramu R.
Nath N.
Reddy M.
Das B.
Synth. Commun.
2004,
34:
3135
<A NAME="RW07507ST-17A">17a</A>
Zolfigol MA.
Madrakian E.
Ghaemi E.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2001,
40:
1191
<A NAME="RW07507ST-17B">17b</A>
Zolfigol MA.
Madrakian E.
Ghaemi E.
Molecules
2001,
6:
614
<A NAME="RW07507ST-17C">17c</A>
Zolfigol MA.
Madrakian E.
Ghaemi E.
Kiani M.
Synth. Commun.
2000,
11:
2057
<A NAME="RW07507ST-17D">17d</A>
Shirini F.
Zolfigol MA.
Torabi S.
Lett. Org. Chem.
2005,
2:
544
<A NAME="RW07507ST-17E">17e</A>
Damavandi JA.
Zolfigol MA.
Karimi B.
Synth. Commun.
2001,
31:
3183
<A NAME="RW07507ST-17F">17f</A>
Zolfigol MA.
Sadeghi MM.
Mohammadpoor-Baltork I.
Ghorbani Choghamarani A.
Taqian-nasab A.
Asian J. Chem.
2001,
13:
887
<A NAME="RW07507ST-17G">17g</A>
Das B.
Venkateswarlu K.
Mahender G.
Mahender L.
Tetrahedron Lett.
2005,
46:
3041
<A NAME="RW07507ST-17H">17h</A>
Das B.
Banerjee J.
Ravindranath N.
Tetrahedron
2004,
60:
8357
<A NAME="RW07507ST-17I">17i</A>
Ramesh C.
Banerjee J.
Pal R.
Das B.
Adv. Synth. Catal.
2003,
345:
557
<A NAME="RW07507ST-17J">17j</A>
Das B.
Banerjee J.
Chem. Lett.
2004,
33:
960
<A NAME="RW07507ST-17K">17k</A>
Zhuang W.
Jørgensen KA.
Chem. Commun.
2002,
1336
<A NAME="RW07507ST-18">18</A>
General Procedure for the Formation of Benzylidene Acetals
To a stirred solution of the glycoside substrate (100 mg) and benzaldehyde dimethyl
acetal (1.5 mmol) in MeCN (10 mL) was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C for 10 h prior to use) at r.t. After completion of the reaction
(monitored by TLC), the reaction mixture was quenched with Et3N (0.2 mL). The catalyst was filtered off through a plug of Celite, and the filtrate
was removed under reduced pressure to yield the product. Although the product was
pure enough, analytical samples were prepared by passing the crude reaction product
through a short column of silica gel using PE-EtOAc as eluent.
Compound 16: colorless solids, mp 108-109 °C. 1H NMR (500 MHz, CDCl3): δ = 8.10-8.08 (m, 2 H), 7.61-7.57 (m, 1 H), 7.49-7.44 (m, 4 H), 7.37-7.33 (m, 3
H), 6.02-5.94 (m, 1 H), 5.53 (s, 1 H), 5.39-5.35 (m, 1 H), 5.26-5.23 (m, 1 H), 4.98
(dd, J = 3.5, 10.5 Hz, 1 H), 4.52-4.46 (m, 3 H), 4.38-4.35 (dd, J = 2.0, 12.5 Hz, 1 H), 4.22-4.17 (m, 1 H), 4.13-4.08 (m, 2 H), 3.55 (d, J = 1.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.0, 137.5, 133.50, 133.45, 130.0, 129.3, 128.9, 128.5, 128.1, 126.1, 117.9,
101.0, 100.7, 72.8, 72.7, 70.3, 68.9, 66.4, 60.6. LRMS-FAB: m/z calcd for C23H27N4O6 [M + NH4
+]: 455; found: 455. Anal. Calcd for C23H23N3O6: 63.15; H, 5.30; N, 9.61, Found: C, 62.80; H, 5.47; N, 9.57.
<A NAME="RW07507ST-19">19</A>
Rehnberg N.
Magnusson G.
J. Org. Chem.
1990,
55:
5467
<A NAME="RW07507ST-20">20</A>
Cumpstey I.
Chayajarus K.
Fairbanks AJ.
Redgrave AJ.
Seward CMP.
Tetrahedron: Asymmetry
2004,
15:
3207
<A NAME="RW07507ST-21">21</A>
General Procedure for the Cleavage of Benzylidene Acetals
To a stirred solution of the 4,6-O-benzylidene-glycopyrano-side (100 mg) in a mixed solvent of CH2Cl2 and MeOH (or i-PrOH; v/v 4:1, 10 mL) was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C for 10 h prior to use) at r.t. After completion of the reaction
(monitored by TLC), the mixture was filtered through a Celite bed and the filtrate
was con-centrated. The residue was purified by column chromatog-raphy on silica gel
using PE-EtOAc as eluent to afford the pure product. If the acid-sensitive functional
groups exist, it is necessary to quench the reaction with Et3N (0.2 mL) after completion of the reaction.
Compound 19: white solids, mp 135-136 °C. 1H NMR (300 MHz, CDCl3): δ = 7.45 (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 8.7 Hz, 2 H), 7.27-7.24 (m, 2 H), 7.10 (d, J = 8.1 Hz, 2 H), 6.91-6.85 (m, 4 H), 4.76 (d, J = 10.2 Hz, 1 H), 4.65 (d, J = 12.6 Hz, 3 H), 4.56 (d, J = 12.9 Hz, 1 H), 3.99-3.93 (m, 2 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.79-3.72 (m,
1 H), 3.67 (t, J = 9.3 Hz, 1 H), 3.54 (dd, J = 3.3, 9.3 Hz, 1 H), 3.46-3.44 (m, 1 H), 2.58 (br s, 1 H), 2.32 (s, 3 H), 2.01 (br
s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 137.8, 132.6, 130.3, 129.9, 129.7, 129.6, 113.9, 113.8, 87.8, 82.1, 77.9, 75.4,
72.0, 69.4, 67.4, 62.8, 55.3. 21.1. ESI-HRMS: m/z calcd for C29H35O7S [M + H+]: 527.2098; found: 527.2104.
<A NAME="RW07507ST-22">22</A>
Fan Q.-H.
Ni N.-T.
Li Q.
Zhang L.-H.
Ye X.-S.
Org. Lett.
2006,
8:
1007
<A NAME="RW07507ST-23">23</A>
Marco-Contelles J.
Molina MT.
Anjum S.
Chem. Rev.
2004,
104:
2857
<A NAME="RW07507ST-24">24</A>
Larock RC.
Comprehensive Organic Transformations
2rd ed.:
John Wiley and Sons;
New York:
1999.
p.1019