Synlett, Table of Contents ACCOUNT © Georg Thieme Verlag Stuttgart · New York Synthesis of β-Lactams Using the Kinugasa Reaction Runa Pal, Subhash Chandra Ghosh, Koushik Chandra, Amit Basak*Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, IndiaFax: absk@chem.iitkgp.ernet.in; Recommend Article Abstract Buy Article All articles of this category Abstract The development of new strategies for the synthesis of β-lactams and their derivatives remains at the forefront of organic synthesis. The copper(I)-catalyzed cycloaddition of a terminal alkyne and a nitrone, the Kinugasa reaction, leading to the formation of a β-lactam has recently drawn to the attention of organic chemists because of its wide scope as well as interesting mechanism. This report aims to give an account of developments in this area with particular emphasis on asymmetric examples. 1 Introduction 2 Synthesis of β-Lactams Using the Kinusaga Reaction 3 Asymmetric Kinugasa Reaction 4 Intramolecular Kinugasa Reaction 5 Kinugasa Reactions under Click Chemistry Conditions 6 Proline-Mediated Kinugasa Reaction 7 Kinugasa Reaction in the Synthesis of Peptidomimetics 8 Conclusion Key words β-lactams - cycloadditions - alkynes - nitrones - Kinugasa reaction Full Text References References 1a Antibiotic Resistance: Origins, Evolution, Selection and Spread Chadwick DJ. Goode J. John Wiley & Sons; Chichester: 1997. 1b McGowan JE. Tenover FC. Nat. Rev. Microbiol. 2004, 2: 251 1c Schmidt FR. Appl. Microbiol. Biotechnol. 2004, 63: 335 2a Chain B. Nature 1991, 353: 492 2b Ellis-Pegler RB. N. Z. Med. J. 1986, 99: 546 3a Kuo D. Weidner J. Griffin P. Shah SK. Knight WB. Biochemistry 1994, 33: 8347 3b Edwards PD. Bernstein PR. Med. Res. Rev. 1994, 14: 127 3c Mascaretti OA. Boschetti CE. Danelon GO. Mata FG. Roveri OA. Curr. Med. Chem. 1995, 1: 441 3d Wilmouth RC. Kassamally S. Westwood NJ. Sheppard RJ. Claridge TDW. Aplin RT. Wright PA. Pritchard GJ. Schofield CJ. Biochemistry 1999, 38: 7989 4a Burnett DA. Caplen MA. Davis HR. Burrier RE. Clader JW. J. Med. Chem. 1994, 37: 1733 4b Clader JW. Burnett DA. Caplen MA. Domalski MS. Dugar S. Vaccaro W. Sher R. Browne ME. Zhao H. J. Med. Chem. 1996, 39: 3684 4c Wu G. Tormos W. J. Org. Chem. 1997, 62: 6412 4d Vaccaro WD. Davis HR. Bioorg. Med. Chem. Lett. 1998, 8: 313 4e Rosenblum SB. Huynh T. Afonso A. Davis HR. Tetrahedron 2000, 56: 5735 4f Frick W. Bauer-Schäfer A. Bauer J. Girbig F. Corsiero D. Heuer H. Kramer W. Bioorg. Med. Chem. 2003, 11: 1639 4g Burnett DA. Curr. Med. Chem. 2004, 11: 1873 5a Staudinger H. Justus Liebigs Ann. Chem. 1907, 356: 51 It is generally accepted that the Staudinger reaction proceeds stepwise via a zwitterionic intermediate and not via a concerted pericyclic reaction: 5b Jiao L. Liang Y. Xu J. J. Am. Chem. Soc. 2006, 128: 6060 6 Gilman H. Speeter H. J. Am. Chem. Soc. 1943, 65: 2250 7 Hegedus LS. de Weck G. D’Andrea S. J. Am. Chem. Soc. 1998, 110: 2122 8a Grai R. Justus Liebigs Ann. Chem. 1963, 661: 111 8b Hoffmann H. Diehr HJ. Tetrahedron Lett. 1963, 1875 8c Friedrich HJ. Tetrahedron Lett. 1971, 2981 8d Clauss K. Justus Liebigs Ann. Chem. 1969, 722: 110 8e Moriconi EJ. Kelly JF. J. Am. Chem. Soc. 1986, 88: 3657 8f Buynak JD. Rao MN. J. Org. Chem. 1986, 51: 1571 9 Marco-Contelles J. Angew. Chem. Int. Ed. 2004, 43: 2198 10 Kinugasa M. Hashimoto S. J. Chem. Soc., Chem. Commun. 1972, 466 11 Ding LK. Irwin WJ. J. Chem. Soc., Perkin Trans. 1 1976, 2382 12 Ahn C. Kennington JW. DeShong P. J. Org. Chem. 1994, 59: 6282 13a Dutta DK. Boruah RC. Sandhu JS. Heterocycles 1986, 24: 655 13b Dutta DK. Boruah RC. Sandhu JS. Indian J. Chem., Sect. B 1986, 25: 350 14 Okuro K. Enna M. Miura M. Nomura M. J. Chem. Soc., Chem. Commun. 1993, 1107 15 Miura M. Enna M. Okuro K. Nomura M. J. Org. Chem. 1995, 60: 4999 16a Basak A. Bhattacharya G. Bdour HMM. Tetrahedron 1998, 54: 6529 16b Basak A. Bdour HMM. Bhattacharya G. Tetrahedron Lett. 1997, 38: 2535 17 Basak A. Pal R. Bioorg. Med. Chem. Lett. 2005, 15: 2015 18a Taggi AE. Hafez AM. Wack H. Young B. Durry WJ. Lectka T. J. Am. Chem. Soc. 2000, 122: 7831 18b Taggi AE. Hafez AM. Wack H. Young B. Ferraris D. Lectka T. J. Am. Chem. Soc. 2002, 124: 6626 19 Basak A. Ghosh SC. Bhowmick T. Das AK. Bertolasi V. Tetrahedron Lett. 2002, 43: 5499 20 Lo MM.-C. Fu GC. J. Am. Chem. Soc. 2002, 124: 4572 21a Ye M.-C. Zhou J. Huang Z.-Z. Tang Y. Chem. Commun. (Cambridge) 2003, 2554 21b Ye M.-C. Zhou J. Tang Y. J. Org. Chem. 2006, 71: 3576 22 Shintani R. Fu GC. Angew. Chem. Int. Ed. 2003, 42: 4082 23a Banfi L. Guanti G. Angew. Chem. Int. Ed. Engl. 1995, 34: 2393 23b Banfi L. Guanti G. Eur. J. Org. Chem. 1998, 1543 24 Basak A. Khamrai UK. Mallick UK. Chem. Commun. 1996, 749 25 Basak A. Mandal S. Tetrahedron Lett. 2002, 43: 4241 26 Pal R. Basak A. Chem. Commun. 2006, 2992 27a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 27b Rodionov VO. Fokin VV. Finn MG. Angew. Chem. Int. Ed. 2005, 44: 2210 28 Basak A. Chandra K. Pal R. Ghosh SC. Synlett 2007, 1585 29 Baldwin JE. Otsuka M. Wallace PM. Tetrahedron 1986, 42: 3097 30 Basak A. Ghosh SC. Synlett 2004, 1637 31 Palomo C. Aizpurua JM. Benito A. Galarza R. Khamrai UK. Vazquez J. Pascual-Teresa B. Nieto PM. Linden A. Angew. Chem. Int. Ed. 1999, 38: 3056 32 Kessler H. Angew. Chem. Int. Ed. Engl. 1982, 21: 512 33 Basak A. Ghosh SC. Das AK. Bertolasi V. Org. Biomol. Chem. 2005, 3: 4050