Subscribe to RSS
DOI: 10.1055/s-2007-990841
Chemoselective Epoxidation of Ene-Ynamides: Intramolecular Cyclopropanation Induced by the Intermediate α-Oxocarbene
Publication History
Publication Date:
12 October 2007 (online)
Abstract
Chemoselective epoxidation of the triple bond of ene-ynamides generates an α-oxocarbene intermediate that effects the intramolecular cyclopropanation of the alkene.
Key words
ynamides - epoxidation - cyclopropanation - oxirene - α-oxocarbene
- 1
Couty S.Meyer C.Cossy J. Angew. Chem. Int. Ed. 2006, 45: 6726 - For the platinum-catalyzed cycloisomerization of ene-ynamides, see:
-
2a
Marion F.Coulomb J.Courillon C.Fensterbank L.Malacria M. Org. Lett. 2004, 6: 1509 -
2b
Marion J.Coulomb J.Servais A.Courillon C.Fensterbank L.Malacria M. Tetrahedron 2006, 62: 3856 - 3
Mamane V.Gress T.Krause H.Fürstner A. J. Am. Chem. Soc. 2004, 126: 8654 - 4 For a review on gold-catalyzed reactions, see:
Hashmi ASK. Chem. Rev. 2007, 107: 3180 - 5
Nieto-Oberhuber C.López S.Jiménez-Núñez E.Echavarren AM. Chem. Eur. J. 2006, 12: 5916 ; and references therein -
6a
Lewars EG. Chem. Rev. 1983, 83: 519 -
6b
Delamere C.Jakins C.Lewars E. Can. J. Chem. 2002, 80: 94 - 7
Stille JK.Whitehurst DD. J. Am. Chem. Soc. 1964, 86: 4871 - 8
Curci R.Fiorentino M.Fusco C.Mello R.Ballistreri FP.Failla S.Tomaselli GA. Tetrahedron Lett. 1992, 33: 7929 - 9
Murray RW.Singh M. J. Org. Chem. 1993, 58: 5076 - 10 Epoxidation of coordinated alkynes generate α-ketocarbene complexes, see:
Sun S.Edwards JO.Sweigart DA.D’Accolti L.Curci R. Organometallics 1995, 14: 1545 - 11
Zeller K.-P.Kowallik M.Haiss P. Org. Biomol. Chem. 2005, 3: 2310 - 12
Dayan S.Ben-David I.Rozen S. J. Org. Chem. 2000, 65: 8816 - 13 Oxidation of terminal alkynes with Oxone catalyzed by a Mn-porphyrin in the presence of primary amines as the ketene trap affords amides, see:
Chan W.-K.Ho C.-M.Wong M.-K.Che C.-M. J. Am. Chem. Soc. 2006, 128: 14796 - 14 The α-oxocarbenes generated from cyclic α-diazoketones preferentially rearrange to α,β-unsaturated ketones or undergo Wolff rearrangement rather than transannular C-H insertions, see:
Ciabattoni J.Campbell RA.Renner CA.Concannon PW. J. Am. Chem. Soc. 1970, 92: 3826 - For the epoxidations of enamides, see:
-
15a
Xiong H.Hsung RP.Shen L.Hahn JM. Tetrahedron Lett. 2002, 43: 4449 -
15b
Adam W.Bosio SG.Wolff BT. Org. Lett. 2003, 5: 819 -
15c
Davies SG.Key M.-S.Rodriguez-Solla H.Sanganee HJ.Savory ED.Smith AD. Synlett 2003, 1659 - For the epoxidation of allenamides, see:
-
16a
Xiong H.Hsung RP.Berry CR.Rameshkumar C. J. Am. Chem. Soc. 2001, 123: 7174 -
16b
Rameshkumar C.Xiong H.Tracey MR.Berry CR.Yao LJ.Hsung RP. J. Org. Chem. 2002, 67: 1339 - 17
Yang D.Wong M.-K.Yip Y.-C. J. Org. Chem. 1995, 60: 3887. - 18
Adam W.Bialas J.Hadjiarapoglou L. Chem. Ber. 1991, 124: 2377 -
20a
Sharpless KB.Michaelson RC. J. Am. Chem. Soc. 1973, 95: 6136 -
20b
Sharpless KB.Verhoeven TR. Aldrichimica Acta 1979, 12: 63 -
21a The vanadium-catalyzed epoxidation of α- and β-allenyl alcohols has been descibed, see:
Kim SJ.Cha JK. Tetrahedron Lett. 1988, 29: 5613 -
21b Kinetic resolutions of α-allenyl and propargylic alcohols have also been attempted, see:
Sharpless KB.Behrens CH.Katsuki T.Lee AWM.Martin VS.Takatani M.Viti SM.Walker FJ.Woodard SS. Pure Appl. Chem. 1983, 55: 589 - 23
Zhang Y.Hsung RP.Tracey MR.Kurtz KCM.Vera EL. Org. Lett. 2004, 6: 1151 - 24
Batey RA.Thadani AN. Org. Lett. 2002, 4: 3827 -
25a
Martin SF.Spaller MR.Liras S.Hartmann B. J. Am. Chem. Soc. 1994, 116: 4493 -
25b
Lautens M.Meyer C.Van Oeveren A. Tetrahedron Lett. 1997, 38: 3833 -
25c
Cossy J.Blanchard N.Meyer C. Eur. J. Org. Chem. 2001, 339
References and Notes
For a special issue devoted to the chemistry of ynamides, see: Tetrahedron 2006, 62, issue 16.
22Representative Procedure: 2-Hydroxy-1-{(1 S *,5 R* )-2-(4-methylbenzenesulfonyl)-2-azabicyclo[3.1.0]hex-1-yl}ethanone (10) To a solution of ynamide 9 (136 mg, 0.486 mmol) in CH2Cl2 (5 mL) at 0 °C were successively added VO(acac)2 (6.4 mg, 0.024 mmol, 0.05 equiv) and TBHP (0.220 mL, 5.5M in decane, 1.21 mmol, 2.5 equiv). After 0.5 h at r.t., the reaction mixture was cooled to 0 °C and cautiously hydrolyzed with a 25% aqueous solution of Na2S2O3. After extraction with CH2Cl2, the combined organic extracts were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude material was purified by flash chromatography (PE-EtOAc, 55:45) to afford 52 mg (40%) of 10 as a colorless oil. IR: 3475, 1701, 1339, 1160, 1086, 903, 808, 666 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2 H), 7.34 (d, J = 8.5 Hz, 2 H), 5.24 (d, AB syst, J = 19.1 Hz, 1 H), 4.56 (d, AB syst, J = 19.1 Hz, 1 H), 3.70 (ddd, J = 10.6, 9.0, 2.5 Hz, 1 H), 3.03 (br s, 1 H, OH), 2.81 (ddd, app td, J = 10.6, 9.5 Hz, 1 H), 2.45 (s, 3 H), 2.27-2.15 (m, 1 H), 1.92-1.83 (m, 3 H), 0.62 (dd, app t, J = 4.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 206.3 (s), 144.8 (s), 131.9 (s), 129.7 (d, 2 C), 128.9 (d, 2 C), 67.1 (t), 53.9 (s), 49.6 (t), 34.2 (d), 25.8 (t), 21.6 (q), 16.8 (t). MS (EI, 70 eV): m/z (%) = 295 (4)[M+], 293 (7), 264 (9), 155 (15), 141 (10), 140 (100), 139 (11), 92 (19), 91 (82), 89 (8), 82 (74), 80 (8), 65 (29), 55 (86), 54 (11), 53 (10). Anal. Calcd for C14H17NO4S: C, 56.93; H, 5.80; N, 4.74. Found: C, 56.88; H, 5.93; N, 4.61.