Der Nuklearmediziner 2008; 31(1): 21-24
DOI: 10.1055/s-2008-1004615
PET und Strahlentherapie

© Georg Thieme Verlag Stuttgart · New York

PET in der Strahlentherapie: Zielvolumen

PET in Radiooncology: Target VolumeM. Mix1 , S. Kremp2
  • 1Abteilung Nuklearmedizin, Radiologische Klinik, Universitätsklinikum Freiburg
  • 2Klinik für Radioonkologie, Universitätsklinikum des Saarlandes, Homburg / Saar
Further Information

Publication History

Publication Date:
28 February 2008 (online)

Zusammenfassung

Der vorliegende Artikel soll einen Überblick über den physikalisch-technischen Aspekt des Zielvolumenkonzeptes der Strahlentherapie geben. Nach einer Einführung der Begrifflichkeiten im Zusammenhang mit dem Zielvolumen werden die beim Einbinden von funktionellen PET-Daten zur Definition des GTV auftretenden Probleme und Lösungen beschrieben sowie offene Fragen adressiert.

Abstract

The aim of this article is to give a short review over the physical-technical aspects of the target volume concept in radiotherapy. After an introduction of the target volume the problems and solutions are described when integrating functional data for the definition of the GTV are used. Finally, open questions are being addressed.

Literatur

  • 1 International Commission on Radiation Units and Measurements .ICRU Report 50. Prescribing, recording and reporting photon beam therapy. 1993
  • 2 International Commission on Radiation Units and Measurements .ICRU Report 62. Prescribing, recording and reporting photon beam therapy. Supplement to ICRU Report 50. 1999
  • 3 Black Q C, Grills I S, Kestin L L. et al . Defining a radiotherapy target with positron emission tomography.  Int J Radiat Oncol Biol Phys. 2004;  60 1272-1282
  • 4 Browne J A, De Pierro A R. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography.  IEEE Trans Med Imag. 1996;  15 687-699
  • 5 Caldwell C B, Mah K, Skinner M, Danjoux C E. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET.  Int J Radiat Oncol Biol Phys. 2003;  55 1381-1393
  • 6 Caldwell C B, Mah K, Ung Y C. et al . Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion.  Int J Radiat Oncol Biol Phys. 2001;  51 923-931
  • 7 Ekberg L, Holmberg O, Wittgren L, Bjelkengren G, Landberg T. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer?.  Radiother Oncol. 1998;  48 71-77
  • 8 Erdi Y E, Rosenzweig K, Erdi A K. et al . Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET).  Radiother Oncol. 2002;  62 51-60
  • 9 Fox J L, Rengan R, O'Meara W. et al . Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer?.  Int J Radiat Oncol Biol Phys. 2005;  62 70-75
  • 10 Grosu A L, Weber W A, Astner S T. et al . 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy?.  Int J Radiat Oncol Biol Phys. 2006;  66 339-344
  • 11 Hudson H M, Larkin R S. Accelerated image reconstruction using ordered subsets of projection data.  IEEE Trans Med Imag. 1994;  13 601-609
  • 12 Kadrmas D J. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms.  Phys Med Biol. 2004;  49 4731-4744
  • 13 Leong T, Everitt C, Yuen K. et al . A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer.  Radiother Oncol. 2006;  78 254-261
  • 14 Ling C C, Humm J, Larson S. et al . Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality.  Int J Radiat Oncol Biol Phys. 2000;  47 551-560
  • 15 Mageras G S, Fuks Z, Leibel S A. et al . Computerized design of target margins for treatment uncertainties in conformal radiotherapy.  Int J Radiat Oncol Biol Phys. 1999;  43 437-445
  • 16 Mix M, Moser E. Einfluss der PET-Bildrekonstruktion auf die GTV-Definition für die Strahlentherapieplanung.  Nuklearmedizin. 2007;  46 A 10-A10
  • 17 Nestle U, Kremp S, Grosu A L. Practical integration of [18F]-FDG-PET and PET / CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives.  Radiother Oncol. 2006;  81 209-225
  • 18 Nestle U, Kremp S, Schaefer-Schuler A. et al . Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer.  J Nucl Med. 2005;  46 1342-1348
  • 19 Pötzsch C, Hofheinz F, van den Hoff J. Fast user guided segmentation and quantification of volumes in 3-D datasets.  Mol Imaging Biol. 2005;  7 152
  • 20 Riegel A C, Berson A M, Destian S. et al . Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET / CT fusion.  Int J Radiat Oncol Biol Phys. 2006;  65 726-732
  • 21 Schinagl D A, Vogel W V, Hoffmann A L, van Dalen J A, Oyen W J, Kaanders J H. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.  Int J Radiat Oncol Biol Phys. 2007;  69 1282-1289
  • 22 Stroom J C, de Boer H C, Huizenga H, Visser A G. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability.  Int J Radiat Oncol Biol Phys. 1999;  43 905-919
  • 23 van Baardwijk A, Bosmans G, Boersma L. et al . PET / CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes.  Int J Radiat Oncol Biol Phys. 2007;  68 771-778
  • 24 van Herk M, Remeijer P, Rasch C, Lebesque J V. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy.  Int J Radiat Oncol Biol Phys. 2000;  47 1121-1135
  • 25 Yaremko B, Riauka T, Robinson D. et al . Thresholding in PET images of static and moving targets.  Phys Med Biol. 2005;  50 5969-5982

Dr. M. Mix

Abteilung Nuklearmedizin Radiologische Universitätsklinik Universitätsklinikum Freiburg

Hugstetter Str. 55

79106 Freiburg

Phone: +49 / 7 61 / 2 70 39 65

Email: michael.mix@uniklinik-freiburg.de