Zusammenfassung
Ursprünglich entwickelt, um bei projektionsradiografischen Anwendungen die Absorptionseffizienz zu verbessern und den Dynamikbereich zu erhöhen, finden Systeme mit Flachbilddetektoren nun auch zunehmend in der Neuroangiografie Anwendung. Insbesondere als C-Bogen-gestützte Rotationsangiografie erlauben Flachdetektorsysteme eine schnelle Akquisition von Volumendaten (FD-CT) mit der Möglichkeit der sekundären Rekonstruktion CT-ähnlicher Schnittbilder in hoher Kontrastauflösung unmittelbar im Angiografieraum. Als „Angiografisches CT” profitieren neben der diagnostischen Anwendung vor allem interventionelle Behandlungen wie Stentimplantationen oder Aneurysmaembolisationen von den Vorteilen der FD-Technologie. Prozedurale Komplikationen wie Einblutungen können, falls erforderlich, unmittelbar im Angiografieraum ohne Zeitverlust durch Umlagern oder Patiententransport dargestellt werden, wodurch das Komplikationsmanagement deutlich verbessert wird. Bei myelografischen Untersuchungen ermöglichen Flachdetektorsysteme auch die simultane Akquisition des „Postmyelographie-CTs” und verbessern so den klinischen Workflow. Auch spinale Interventionen wie Vertebro- und Kyphoplastien profitieren von der FD-Technik. Die vorliegende Übersicht beschreibt kurz die technischen Grundlagen der FD-CT und gibt dann einen Überblick über mögliche klinische Anwendungen in der diagnostischen und interventionellen Neuroradiologie.
Abstract
Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range than available with X-ray film or film-screen combinations, flat-panel detector technology has become widely accepted for neuroangiographic imaging. In particular flat-panel detector computed tomography (FD-CT) which uses rotational C-arm-mounted flat-panel detector technology is capable of volumetric imaging with high spatial resolution. As “Angiographic CT” FD-CT may be helpful during many diagnostic and neurointerventional procedures, i. e. intracranial stenting for cerebrovascular stenoses, stent-assisted coil embolization of wide-necked cerebral aneurysms and embolizations of arteriovenous malformations. By providing morphologic, CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize periprocedural hemorrhage and may thus improve rapid complication management without the need for patient transfer. In addition, myelography and postmyelographic FD-CT imaging can be carried out using a single machine. Spinal interventions, such as kyphoplasty or vertebroplasty might also benefit from FD-CT. This paper briefly reviews the technical principles of FD technology and then focuses on possible applications in diagnostic and interventional neuroradiology.
Key words
brain - angiography - CT - interventional procedures
References
1
Kalender W A, Kyriakou Y.
Flat-detector computed tomography (FD-CT).
Eur Radiol.
2007;
17
2767-2779
2
Knollmann F, Valencia R, Buhk J H. et al .
Characteristics and applications of a flat panel computer tomography system.
Fortschr Röntgenstr.
2006;
178
862-871
3
Antonuk L E, Jee K W, El-Mohri Y. et al .
Strategies to improve the signal and noise performance of active matrix, flat panel imagers for diagnostic x-ray applications.
Med Phys.
2000;
27
289-306
4
Kachelrieß M, Schaller S, Kalender W A.
Advanced single-slice rebinning in cone-beam spiral CT.
Med Phys.
2000;
27
754-772
5
Fahrig R, Fox S, Lownie S. et al .
Use of a C-arm system to generate true 3-D computed rotational angiograms: Preliminary in vitro and in vivo results.
Am J Neuroradiol.
1997;
18
1507-1514
6
Akpek S, Brunner T, Benndorf G. et al .
Three-dimensional imaging and cone beam volume CT in C-arm angiography with flat panel detector.
Diagn Interv Radiol.
2005;
11
10-13
7
Kalender W A.
Der Einsatz von Flachbilddetektoren für die CT-Bildgebung.
Radiologe.
2003;
43
379-387
8
Kyriakou Y, Richter G, Doerfler A. et al .
Neuroradiological applications using routine C-arm flat-detector CT: Evaluation of patient dose measurements.
AJNR.
2008;
in press
9
Fahrig R, Dixon R L, Payne T. et al .
Dose and image quality for a cone-beam C-arm CT system.
Med Phys.
2006;
33
4541-4550
10
Heran N S, Song J K, Namba K. et al .
The utility of DynaCT in neuroendovascular procedures.
Am J Neuroradiol.
2006;
27
330-332
11
Doelken M, Struffert T, Richter G. et al .
Flat panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT.
Neuroradiology.
2008;
11
Epub ahead of print
12
Loose R, Wucherer M, Brunner T. et al .
Visualization of 3D low contrast objects by CT cone-beam reconstruction of a rotational angiography with a dynamic solid body detector.
Röntgenstr Fortschr.
2005;
S1
160
13
White P M, Gilmour J N, Weir N W. et al .
AngioCT in the management of neurointerventional patients: a prospective, consecutive series with associated dosimetry and resolution data.
Neuroradiology.
2008;
50
321-330
14
Doerfler A, Wanke I, Egelhof T. et al .
Aneurysmal rupture during embolization with Guglielmi Detachable Coils: Causes, management, and outcome.
Am J Neuroradiol.
2001;
22
1825-1832
15
Wanke I, Doerfler A, Schoch B. et al .
Treatment of wide-necked intracranial aneurysms with a self-expanding stent system: initial clinical experience.
Am J Neuroradiol.
2003;
24
1192-1199
16
Engelhorn T, Struffert T, Richter G. et al .
Flat panel detector angiographic CT in the management of aneurismal rupture during coil embolization.
AJNR.
2008;
Epub ahead of print
17
Benndorf G, Strother C M, Claus B. et al .
Angiographic CT in cerebrovascular stenting.
Am J Neuroradiol.
2005;
26
1813-1818
18
Richter G, Engelhorn T, Struffert T. et al .
Flat panel detector angiographic CT for stent-assisted coil embolization of broad-based cerebral aneurysms.
Am J Neuroradiol.
2007;
28
1902-1908
19
Wanke I, Panagiotopoulos V, Forsting M.
Bleeding risk of intracranial vascular malformations.
Röntgenstr Fortschr.
2007;
179
365-372
20
Kwon B J, Han M H, Kang H S. et al .
Endovascular occlusion of direct carotid cavernous fistula with detachable balloons: usefulness of 3D angiography.
Neuroradiology.
2005;
47
271-281
21
SSYLVIA Study Investigators .
Stenting of Symptomatic Atherosclerotic Lesions in the Vertebral or Intracranial Arteries (SSYLVIA): study results.
Stroke.
2004;
35
1388-1392
22
Wojak J C, Dunlap D C, Hargrave K R. et al .
Intracranial angioplasty and stenting: long-term results from a single center.
AJNR Am J Neuroradiol.
2006;
27
1882-1892
23
Bose A, Hartmann M, Henkes H. et al .
A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study.
Stroke.
2007;
38
1531-1537
24
Buhk J H, Lingor P, Knauth M.
Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting.
Neuroradiology.
2008;
50
349-354
25
Mahnken A H, Seyfarth T, Flohr T. et al .
Flat panel detector computed tomography for the assessment of coronary artery stents: phantom study in comparison with 16-slice spiral computed tomografy.
Invest Radiol.
2005;
40
8-13
26
Engelhorn T, Rennert J, Richter G. et al .
Myelografy using flat panel volumetric computed tomografy: a comparative study in patients with lumbar spinal stenosis.
Spine.
2008;
32
523-527
27
Layton K F, Thielen K R, Koch C A. et al .
Vertebroplasty, first 1000 levels of a single center: evaluation of the outcomes and complications.
Am J Neuroradiol.
2007;
28
683-689
Prof. Arnd Dörfler
Abteilung für Neuroradiologie, Universitätsklinikum Erlangen
Schwabachanlage 6
91054 Erlangen
Telefon: ++ 49/91 31/8 53 43 26
Fax: ++ 49/91 31/8 53 61 79
eMail: arnd.doerfler@uk-erlangen.de