Int J Sports Med 2008; 29(10): 795-802
DOI: 10.1055/s-2008-1038433
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Testosterone and Ca2+ Regulation in Skeletal Muscle

K. Anttila1 , S. Mänttäri1 , 2 , M. Järvilehto1
  • 1Department of Biology, University of Oulu, Oulu, Finland
  • 2Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
Further Information

Publication History

accepted after revision February 11, 2008

Publication Date:
09 April 2008 (online)

Abstract

The aim of this study was to examine the effect of testosterone treatment on the expression of dihydropyridine and ryanodine receptors in skeletal muscle of mouse. Furthermore, the effects of training, a method also known to elevate the plasma testosterone level, were studied and compared to the effects of pure testosterone administration. Male mice were either administered with testosterone or trained with treadmill. After 6 weeks, hindlimb muscles were excised and the expression of receptors was measured by Western blotting. Furthermore, the alterations in myosin heavy chain phenotypes were studied. In general, both training and testosterone administration induced changes in the expression of both receptors and in myosin heavy chain composition. In testosterone treated mice the expression of dihydropyridine receptor in extensor digitorum longus was higher compared to the control ones (38.9 %, p = 0.026). In soleus the expression was quite the contrary (− 27.3 %, p = 0.044), as was the case with ryanodine receptor (− 51.4 %, p = 0.012). The amount of ryanodine receptors was higher in rectus femoris (144.0 %, p = 0.044) and plantaris (48.1 %, p = 0.037) in testosterone treated mice. In trained mice, the expression of ryanodine receptor was significantly higher in gastrocnemius (27.6 %, p = 0.018), soleus (57.2 %, p = 0.025), plantaris (28.5 %, p = 0.009) and extensor digitorum longus (94.8 %, p = 0.009) than in the control ones. No differences were observed in the dihydropyridine receptor level. To conclude, training has a more important role in skeletal muscle adaptation compared to increased plasma testosterone level. However, in postural muscles both treatments have comparable effects.

References

  • 1 Allen D L, Harrison B C, Maass A, Bell M L, Byrnes W C, Leinwand L A. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse.  J Appl Physiol. 2001;  90 1900-1908
  • 2 Anttila K, Mänttäri S, Järvilehto M. Expression of dihydropyride and ryanodine receptors in type IIA fibres of rat skeletal muscle.  Acta Histochem Cytochem. 2007;  40 35-41
  • 3 Ariano M A, Armstrong R B, Edgerton V R. Hindlimb muscles fiber populations of five mammals.  J Histochem Cytochem. 1973;  21 51-55
  • 4 Bamman M M, Shipp J R, Jiang J, Gower B A, Hunter G R, Goodman A, McLafferty Jr C L, Urban R J. Mechanical load increases muscle IGF‐I and androgen receptor mRNA concentrations in humans.  Am J Physiol. 2001;  280 E383-E390
  • 5 Bell G J, Syrotuik D, Martin T P, Burnham R, Quinney H A. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans.  Eur J Appl Physiol. 2000;  81 418-427
  • 6 Bhasin S, Woodhouse L, Storer T W. Proof of the effect of testosterone on skeletal muscle.  J Endocrinol. 2001;  170 27-38
  • 7 Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 8 Bricout V-A, Serrurier B D, Bigard A X, Guzennec C Y. Effects of hindlimb suspension and androgen treatment on testosterone receptors in rat skeletal muscles.  Eur J Appl Physiol. 1999;  79 443-448
  • 9 Briggs F N, Lee K F, Feher J J, Wechsler A S, Ohlendieck K, Campbell K. Ca-ATPase isozymes expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle.  FEBS Lett. 1990;  259 269-272
  • 10 Close R I. Dynamic properties of mammalian skeletal muscles.  Physiol Rev. 1972;  52 129-197
  • 11 de Leon R, Hodgson J A, Roy R R, Edgerton V R. Extensor- and flexor-like modulation within motor pools of the rat hindlimb during treadmill locomotion and swimming.  Brain Res. 1994;  654 241-250
  • 12 Díaz-Herrera P, García-Castellano J M, Torres A, Morcuende J A, Calbet J AL, Sarrat R. Effect of high-intensity running in rectus femoris muscle fiber in rats.  J Orthop Res. 2001;  19 229-232
  • 13 Dudley G A, Abraham W M, Terjung R L. Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle.  J Appl Physiol. 1982;  53 844-850
  • 14 Exner G U, Staudte H W, Pette D. Isometric training of rats – effects upon fast and slow muscle and modification by an anabolic hormone (nandrolone decanoate).  Pflügers Arch. 1973;  345 1-14
  • 15 Froemming G R, Murray B E, Harmon S, Pette D, Ohlendieck K. Comparative analysis of the isoform expression pattern of Ca2+‐regulatory membrane proteins in fast-twitch, slow-twitch, cardiac, neonatal and chronic low-frequency stimulated muscle fibers.  Biochim Biophys Acta. 2000;  1466 151-168
  • 16 Golden K L, Marsh J D, Jiang Y, Brown T, Moulden J. Gonadectomy of adult male rats reduces contractility of isolated cardiac myocytes.  Am J Physiol. 2003;  285 E449-E453
  • 17 Goodman C, Patterson M, Stephenson G. MHC-based fiber type and EC-coupling characteristics in mechanically skinned muscle fibers of the rat.  Am J Physiol. 2003;  284 C1448-C1459
  • 18 Hackney A C. Endurance training and testosterone levels.  Sports Med. 1989;  8 117-127
  • 19 Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes.  Sports Med. 2004;  34 513-554
  • 20 Hu Y, Asano K, Mizuno K, Usuki S, Kawakura Y. Serum testosterone responses to continuous and intermittent exercise training in male rats.  Int J Sports Med. 1999;  20 12-16
  • 21 Hyyppä S, Karvonen U, Räsänen L A, Persson S G, Pösö A R. Androgen receptors and skeletal muscle composition in trotters treated with nandrolene laureate.  Zentralbl Veterinarmed A. 1997;  44 481-491
  • 22 Härkönen M, Näveri H, Kuoppasalmi K, Huhtaniemi I. Pituitary and gonadal function during physical exercise in the male rat.  J Steroid Biochem. 1990;  35 127-132
  • 23 Inoue K, Yamasaki S, Fushuki T, Kano T, Moritani T, Itoh K, Sugimoto E. Rapid increase in the number of androgen receptors following electrical stimulation of the rat muscle.  Eur Appl Physiol. 1993;  66 134-140
  • 24 Jorgensen A O, Shen A C, Arnold W, Leung A T, Campbell K P. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labelling study.  J Cell Biol. 1989;  109 135-147
  • 25 Kandarian S, O'Brien S, Thomas K, Schulte L, Navarro J. Regulation of skeletal muscle dihydropyridine receptor gene expression by biomechanical unloading.  J Appl Physiol. 1992;  72 2510-2514
  • 26 Klueber K M, Feczko J D, Schmidt G, Watkins 3rd J B. Skeletal muscle in the diabetic mouse: histochemical and morphometric analysis.  Anat Rec. 1989;  225 41-45
  • 27 Kraemer W J, Patton J F, Gordon S E, Harman E A, Deschenes M R, Reynolds K, Newton R U, Triplett N T, Dziados J E. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations.  J Appl Physiol. 1995;  78 976-989
  • 28 Laemmli U K. Cleavage of structural proteins during assembly of head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 29 Lamb G D. Excitation-contraction coupling in skeletal muscle: comparison with cardiac muscle.  Clin Exp Pharmacol Physiol. 2000;  27 216-224
  • 30 Lubek B M. Contractile responses of rat lateral gastrocnemius and soleus to dianabol (17β-hydroxy-17-methyl-1, 4-androstadien-3-one) and exercise.  Steroids. 1984;  44 485-495
  • 31 Mänttäri S, Pyörnilä A, Harjula R, Järvilehto M. Expression of L-type calcium channels associated with postnatal development of skeletal muscle function in mouse.  J Muscle Res Cell Mot. 2001;  22 61-67
  • 32 Mänttäri S, Järvilehto M. Comparative analysis of mouse skeletal muscle fibre type composition and contractile responses to calcium channel blocker.  BMC Physiol. 2005;  5 4
  • 33 Nicolopoulos-Stournaras S, Iles J F. Hindlimb muscle activity during locomotion in the rat (Rattus norvegicus) (Rodentia: Muridae).  J Zool Lond. 1984;  203 427-440
  • 34 Ørtenblad N, Lunde P K, Levin K, Andersen J L, Pedersen P K. Enhanced sarcoplasmic reticulum Ca2+ release following intermittent sprint training.  Am J Physiol. 2000;  279 R152-R160
  • 35 Pansarasa O, D'Antona G, Gualea M R, Marzani B, Pellegrino M A, Marzatico F. “Oxidative stress”: effects of mild endurance training and testosterone treatment on rat gastrocnemius muscle.  Eur J Appl Physiol. 2002;  87 550-555
  • 36 Péréon Y, Navarro J, Hamilton M, Booth F W, Palade P. Chronic stimulation differentially modulates expression of mRNA for dihydropyridine receptor isoforms in rat fast twitch skeletal muscle.  Biochem Biophys Res Commun. 1997;  235 217-222
  • 37 Pette D, Staron R S. Transition of muscle fiber phenotypic profiles.  Histochem Cell Biol. 2001;  115 359-372
  • 38 Prezant D J, Karwa M J, Kim H H, Maggiore D, Chung V, Valentine D E. Short- and long-term effects of testosterone on diaphragm in castrated and normal male rats.  J Appl Physiol. 1997;  82 134-143
  • 39 Prilutsky B I, Herzog W, Allinger T L. Mechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of muscle design and force patterns.  J Exp Biol. 1996;  199 801-814
  • 40 Saborido A, Molano F, Moro G, Megías M. Regulation of dihydropyridine receptor levels in skeletal and cardiac muscle by exercise training.  Pflügers Arch. 1995;  429 364-369
  • 41 Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh A B, Lee M I, Storer T W, Casaburi R, Shen R, Bhasin S. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy.  Am J Physiol. 2002;  283 E154-E164
  • 42 Staron R S, Karapondo D L, Kraemer W J, Fry A C, Gordon S E, Falkel J E, Hagerman F C, Hikida R S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and woman.  J Appl Physiol. 1994;  76 1247-1255
  • 43 Sullivan T E, Armstrong R B. Rat locomotory muscle fiber activity during trotting and galloping.  J Appl Physiol. 1978;  44 358-363
  • 44 Tagarakis C VM, Bloch W, Hartmann G, Hollmann W, Addicks K. Testosterone-propionate impairs the response of the cardiac capillary bed to exercise.  Med Sci Sports Exerc. 2000;  32 946-953
  • 45 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.  Proc Natl Acad Sci USA. 1979;  76 4350-4354
  • 46 Tsika R W, Herrick R E, Baldwin K M. Effect of anabolic steroids in skeletal muscle mass during hindlimb suspension.  J Appl Physiol. 1987;  63 2122-2127
  • 47 Üstunel I, Akkoyunlu G, Demir R. The effect of testosterone on gastrocnemius muscle fibres in growing and adult male and female rats: a histochemical, morphometric and ultrastructural study.  Anat Histol Embryol. 2003;  32 70-79
  • 48 Willoughby D S, Taylor L. Effects of sequential bouts of resistance exercise on androgen receptor expression.  Med Sci Sports Exerc. 2004;  36 1499-1506
  • 49 Yarasheski K E, Lemon P WR, Gilloteaux J. Effect of heavy-resistance exercise training on muscle fiber composition in young rats.  J Appl Physiol. 1990;  69 434-437

Dr. Satu Mänttäri

Department of Biology
University of Oulu

P. O. Box 3000

90014 Oulu

Finland

Phone: + 35 85 04 38 51 52

Fax: + 35 8 85 53 12 42

Email: satu.manttari@oulu.fi