Int J Sports Med 2009; 30(2): 119-123
DOI: 10.1055/s-2008-1039164
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

A Method for Determining Critical Swimming Velocity

S. Takahashi1 , K. Wakayoshi2 , A. Hayashi1 , Y. Sakaguchi1 , K. Kitagawa1
  • 1Health and Sport Sciences, Chukyo Unversity, Toyota, Japan
  • 2Competitive Sport, Biwako Seikei Sports College, Otsu, Japan
Further Information

Publication History

accepted after revision July 29, 2008

Publication Date:
20 November 2008 (online)

Abstract

The purpose of this study was to determine whether the critical swimming velocity (Vcri) estimated by the swimming velocity for a distance of 300 m at maximal effort breaststroke reflects the maximal lactate steady state (MLSS). Twelve trained swimmers swam 50 m, 300 m and 2 000 m at maximal effort for determination of Vcri that averaged 1.167 ± 0.045 m · sec−1. Since Vcri was equivalent to 90.5 % of the mean swimming velocity over the distance of 300 m at maximal effort, the swimming velocity obtained by multiplying the swimming velocity for the distance of 300 m of each subject by 90.5 % was taken to be 100 % of the predicted critical swimming velocity (Vcri-pred). Then, in an MLSS test, the subjects were instructed to swim breaststroke 2 000 m (5 × 400 m) at three constant velocities (98 %, 100 %, and 102 % of Vcri-pred), interrupted by four short rest periods from 30 to 45 seconds for blood sampling and heart rate measurement. As a result, the blood lactate concentration at 100 % Vcri-pred showed a higher steady state than the slow velocity, but at high velocity did not show the steady state. In conclusion, we can accurately estimate the Vcri for breaststroke by a one-time 300-m maximal effort swimming test.

References

  • 1 Beneke R, von Duvillard S. Determination of maximal lactate steady state response in selected sports events.  Med Sci Sports Exerc. 1996;  28 241-246
  • 2 Beneke R, von Duvillard S P. Exercise responses to running and in-line skating at self-selected paces.  Med Sci Sports Exerc. 1996;  28 247-250
  • 3 Craig Jr A B, Boomer W L, Skehan P L. Patterns of velocity in competitive breaststroke swimming. Ungerechts BE, Wilke K, Reischle K, eds. Swimming science V. Int Series Sci. Champaign, IL; Human Kinetics 1988: 73-77
  • 4 Craig A B, Dvorak M. Comparison of exercise in air and in water of different temperatures.  Med Sci Sports Exerc. 1996;  1 124-130
  • 5 Dekerle J, Pelayo P, Clipet B, Depretz S, Lefevre T, Sidney M. Critical swimming speed does not represent the speed at maximal lactate steady state.  Int J Sports Med. 2005;  26 525-530
  • 6 Dudley G A, Abraham W M, Terjung R T. Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle.  J Appl Physiol. 1982;  53 844-850
  • 7 Freund H, Oyono-Enguelle S, Heitz A, Marbach J, Ott C, Zouloumian P, Lampert E. Work rate-dependent lactate kinetics after exercise in humans.  J Appl Physiol. 1986;  61 932-939
  • 8 Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W. Justification of the 4-mmol/L lactate threshold.  Int J Sports Med. 1985;  6 117-130
  • 9 Herms S J, Hickson R C. Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training.  J Appl Physiol. 1983;  54 798-802
  • 10 Holmer I. Oxygen uptake during swimming in man.  J Appl Physiol. 1972;  33 502-509
  • 11 Ivy J L, Withers R T, Van Handel R J, Elrer D H, Costill D L. Muscle respiratory capacity and fiber type as determinants of the lactate threshold.  J Appl Physiol. 1979;  48 523-527
  • 12 Jones A M, Doust J H. The validity of the lactate minimum test for determination of the maximal lactate steady state.  Med Sci Sports Exerc. 1998;  30 1304-1313
  • 13 Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training.  Eur J Appl Physiol. 1979;  42 25-34
  • 14 Kumagai S, Tanaka K, Matsuura Y, Matsuzaka A, Hirakoba K, Asano K. Relationships of the anaerobic threshold with the 5 km, 10 km, and 10 mile races.  Eur J Appl Physiol. 1982;  49 13-23
  • 15 Kuroda Y. Long-distance skiing (in Japanese). Scientific Report of Sapporo Olympic Games, Japan Amateur Sports Association. 1972: 103-156
  • 16 Mader A, Liesen H, Heck H, Philippi H, Schurch P M, Hollmann W. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfahigkeit.  Sportarzt Sportmed. 1976;  27 80-88
  • 17 McArdle W D. Metabolic and cardiorespiratory response during free swimming and treadmill walking.  J Appl Physiol. 1971;  30 733-738
  • 18 Maglischo E W. Swimming fastest. Champaign, IL; Human Kinetics 2003: 533-534
  • 19 Martin L, Whyte G P. Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes.  Int J Sports Med. 2000;  21 366-368
  • 20 Monod H, Scherrer J. The work capacity of a synergic muscular group.  Ergonomics. 1965;  8 329-337
  • 21 Moritani T, Nagata A, deVries H A, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold.  Ergonomics. 1981;  24 339-350
  • 22 Pringle J S, Jones A M. Maximal lactate steady state, critical power and EMG during cycling.  Eur J Appl Physiol. 2002;  88 214-226
  • 23 Shono T, Hotta N, Ogaki T, Fujishima K. Relationship between heart rate and oxygen uptake during breaststroke swimming and running on land in swimmers (in Japanese with English abstract).  Bull Res Institute Beppu Woman's Jr College. 2001;  21 3-7
  • 24 Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and fixed anaerobic threshold of 4 mmol/L lactate.  Int J Sports Med. 1981;  3 105-110
  • 25 Takahashi S, Wakayoshi K. A simple method for determination of critical swimming velocity in swimming flume (in Japanese with English abstract).  Res J Phys Educ Chukyo Univ. 2001;  45 11-17
  • 26 Takahashi S, Wakayoshi K, Nagasawa S, Kitagawa K. A simplified method for determination of critical swimming velocity as a swimming fatigue threshold for sprinters and distance swimmers (in Japanese with English abstract).  Jap J Biom Sports Exer. 2002;  6 110-115
  • 27 Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer.  Eur J Appl Physiol. 1992;  64 153-157
  • 28 Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, Miyashita M. Does critical swimming velocity represent exercise intensity at maximal lactate steady state?.  Eur J Appl Physiol. 1993;  66 90-95

Master Shigehiro Takahashi

Chukyo Unversity
Health and Sport Sciences

101 Tokodate Kaizu-Cho

470–0393 Toyota

Japan

Phone: + 81 5 65 46 12 11

Fax: + 81 5 65 45 49 38

Email: shigehirot@aol.com