Horm Metab Res 2008; 40(6): 391-397
DOI: 10.1055/s-2008-1058089
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Protein Kinase A Subunit Expression is Altered in Bloom Syndrome Fibroblasts and the BLM Protein is Increased in Adrenocortical Hyperplasias: Inverse Findings for BLM and PRKAR1A

S. L. Heyerdahl 1 , S. Boikos 1 , A. Horvath 1 , C. Giatzakis 1 , I. Bossis 1 , 2 , C. A. Stratakis 1
  • 1Section on Endocrinology & Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
  • 2Current Address: University of Maryland, Maryland, USA
Further Information

Publication History

received 22.01.2008

accepted 05.02.2008

Publication Date:
06 March 2008 (online)

Abstract

Bloom syndrome is a genetic disorder associated with chromosomal instability and a predisposition to tumors that is caused by germline mutations of the BLM gene, a RecQ helicase. Benign adrenocortical tumors display a degree of chromosomal instability that is more significant than benign tumors of other tissues. Cortisol-producing hyperplasias, such as primary pigmented nodular adrenocortical disease (PPNAD), which has been associated with protein kinase A (PKA) abnormalities and/or PRKAR1A mutations, also show genomic instability. Another RecQ helicase, WRN, directly interacts with the PRKAR1B subunit of PKA. In this study, we have investigated the PRKAR1A expression in primary human Bloom syndrome cell lines with known BLM mutations and examined the BLM gene expression in PPNAD and other adrenal tumor tissues. PRKAR1A and other protein kinase A (PKA) subunits were expressed in Bloom syndrome cells and their level of expression differed by subunit and cell type. Overall, fibroblasts exhibited a significant decrease in protein expression of all PKA subunits except for PRKAR1A, a pattern that has been associated with neoplastic transformation in several cell types. The BLM protein was upregulated in PPNAD and other hyperplasias, compared to samples from normal adrenals and normal cortex, as well as samples from cortisol- and aldosterone-producing adenomas (in which BLM was largely absent). These data reveal an inverse relationship between BLM and PRKAR1A: BLM deficiency is associated with a relative excess of PRKAR1A in fibroblasts compared to other PKA subunits; and PRKAR1A deficiency is associated with increased BLM protein in adrenal hyperplasias.

References

  • 1 Kaneko H, Fukao T, Kondo N. The function of RecQ helicase gene family (especially BLM) in DNA recombination and joining.  Adv Biophys. 2004;  38 45-64
  • 2 German J. Bloom's syndrome. XX. The first 100 cancers.  Cancer Genet Cytogenet. 1997;  93 100-106
  • 3 Davies SL, North PS, Dart A, Lakin ND, Hickson ID. Phosphorylation of the Bloom's Syndrome Helicase and its Role in Recovery from S-Phase Arrest.  Mol Cell Biol. 2004;  24 1279-1291
  • 4 Wu L, Hickson ID. The Bloom's syndrome helicase stimulates the activity of human topoisomerase III alpha.  Nucleic Acids Res. 2002;  30 4823-4829
  • 5 Brosh Jr RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA. Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity.  J Biol Chem. 2000;  275 23500-23508
  • 6 Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH, Valerie K, Shay JW, Ellis NA, Wasylyk B, Harris CC. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination.  EMBO J. 2003;  22 1210-1222
  • 7 Bourdeau I, Matyakhina L, Stergiopoulos SG, Sandrini F, Boikos S, Stratakis CA. 17q22-24 chromosomal losses and alterations of protein kinase A (PKA) subunits expression and activity in ACTH-independent macronodular adrenal hyperplasia (AIMAH).  J Clin Endocrinol Metab. 2006;  91 3626-3632
  • 8 Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation.  J Clin Endocrinol Metab. 2001;  86 4041-4046
  • 9 Stratakis CA, Jenkins RB, Pras E, Mitsiadis CS, Raff SB, Stalboerger PG, Tsigos C, Carney JA, Chrousos GP. Cytogenetic and microsatellite alterations in tumors from patients with the syndrome of myxomas, spotty skin pigmentation, and endocrine overactivity (Carney complex).  J Clin Endocrinol Metab. 1996;  81 3607-3614
  • 10 Groussin L, Cazabat L, Rene-Corail F, Jullian E, Bertherat J. Adrenal pathophysiology: lessons from the Carney complex.  Horm Res. 2005;  64 132-139
  • 11 Neben K, Tews B, Wrobel G, Hahn M, Kokocinski F, Giesecke C, Krause U, Ho AD, Kramer A, Lichter P. Gene expression patterns in acute myeloid leukemia correlate with centrosome aberrations and numerical chromosome changes.  Oncogene. 2004;  23 2379-2384
  • 12 Griffin KJ, Kirschner LS, Matyakhina L, Stergiopoulos S, Robinson-White A, Lenherr S, Weinberg FD, Claflin E, Meoli E, Cho-Chung YS, Stratakis CA. Down-regulation of regulatory subunit type 1A of protein kinase A leads to endocrine and other tumors.  Cancer Res. 2004;  64 8811-8815
  • 13 Matyakhina L, Lenherr SM, Stratakis CA. PKA and chromosomal instability.  Ann NY Acad Sci. 2002;  968 148-157
  • 14 Nguyen DT, Rovira II, Finkel T. Regulation of the Werner helicase through direction with a subunit of protein kinase A.  FEBS Lett. 2002;  521 170-174
  • 15 Sandrini F, Matyakhina L, Sarlis NJ, Kirschner LS, Farmakidis C, Gimm O, Stratakis CA. Regulatory subunit type I-alpha of protein kinase A (PRKAR1A): a tumor-suppressor gene for sporadic thyroid cancer.  Genes Chromosomes Cancer. 2002;  35 182-192
  • 16 Perdigao PF, Stergiopoulos SG, Marco L, Matyakhina L, Boikos SA, Gomez RS, Pimenta FJ, Stratakis CA. Molecular and immunohistochemical investigation of protein kinase a regulatory subunit type 1A (PRKAR1A) in odontogenic myxomas.  Genes Chromosomes Cancer. 2005;  44 204-211
  • 17 Hu P, Beresten SF, Brabant AJ van, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA. Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability.  Hum Mol Genet. 2001;  10 1287-1298
  • 18 Bertherat J, Groussin L, Sandrini F, Matyakhina L, Bei T, Sterigopoulos S, Papageorgiou T, Bourdeau I, Kirschner LS, Vincent-Dejean C, Perlemoine K, Gicquel C, Bertagna X, Stratakis CA. Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity.  Cancer Res. 2003;  63 5308-5319
  • 19 Cho-Chung YS, Nesterova M, Pepe S, Lee GR, Noguchi K, Srivastava RK, Srivastava AR, Alper O, Park YG, Lee YN. Antisense DNA-targeting protein kinase A-RIα subunit: a novel approach to cancer treatment.  Front Biosci. 1999;  4 898-907
  • 20 Tortora G, Pepe S, Bianco C, Damiano V, Ruggiero A, Baldassarre G, Corbo C, Cho-Chung YS, Bianco AR, Ciardiello F. Differential effects of protein kinase A sub-units on Chinese-hamster-ovary cell cycle and proliferation.  Int J Cancer. 1994;  59 712-716
  • 21 Skalhegg BS, Johansen AK, Levy FO, Andersson KB, Aandahl EM, Blomhoff HK, Hansson V, Tasken K. Isozymes of cyclic AMP-dependent protein kinases (PKA) in human lymphoid cell lines: levels of endogenous cAMP influence levels of PKA subunits and growth in lymphoid cell lines.  J Cell Physiol. 1998;  177 85-93
  • 22 MacDaniel LD, Chester N, Watson M, Borowsky AD, Leder P, Schultz RA. Chromosome instability and tumor predisposition inversely correlate with BLM protein levels.  DNA Repair (Amst). 2003;  2 1387-1404
  • 23 Selsky CA. Defective host-cell reactivation of UV-irradiated herpes simplex virus by Bloom's syndrome skin fibroblasts. DNA Repair Mechanisms. New York: Academic Press, Inc. 1978: 555
  • 24 German J, Bloom D, Passarge E. Bloom's syndrome VII. Progress report for 1978.  Clin Genet. 1979;  15 361-367
  • 25 Doniger J, Paolo JA Di, Popescu NC. Transformation of Bloom's syndrome fibroblasts by DNA transfection.  Science. 1983;  222 1144-1146
  • 26 Willis AE, Weksberg R, Tomlinson S, Lindahl T. Structural alterations of DNA ligase I in Bloom syndrome.  Proc Natl Acad Sci USA. 1987;  84 8016-8020
  • 27 German J, Bloom D, Passarge E. Bloom's syndrome V. Surveillance for cancer in affected families.  Clin Genet. 1977;  12 162-168
  • 28 Coates PM, Hale DE, Stanley CA, Corkey BE, Cortner JA. Genetic deficiency of medium-chain acyl coenzyme A dehydrogenase: studies in cultured skin fibroblasts and peripheral mononuclear leukocytes.  Pediatr Res. 1985;  19 671-676
  • 29 Jacobs L, Demars R. Quantification of chemical mutagenesis in diploid human fibroblasts: induction of azaguanine-resistant mutants by N-methyl-N′-nitro-N-nitrosoguanidine.  Mutat Res. 1978;  53 29-53
  • 30 Morrow 3rd G, Mellman WJ, Barness LA, Dimitrov NV. Propionate metabolism in cells cultured from a patient with methylmalonic acidemia.  Pediatr Res. 1969;  3 217-219

Correspondence

C.A. StratakisMD, DSc 

Chief

Section on Endocrinology & Genetics (SEGEN), PDEGEN

NICHD

National Institutes of Health

Room 1-3330

10 Center Drive, MSC-1103

Bethesda

20892 MD

USA

Phone: +1/301/496 46 86

Fax: +1/301/402 05 74

Email: stratakc@mail.nih.gov