Subscribe to RSS
DOI: 10.1055/s-2008-1072594
A Novel Method for the High-Pressure-Promoted, Uncatalyzed Aza-Michael Reaction of Nitrogen Heterocycles with Enones in Water [1]
Publication History
Publication Date:
07 May 2008 (online)
Abstract
A new green chemical method for the aza-Michael reaction of nitrogen heterocycles with enones in water as a solvent without the use of any catalysts under high-pressure conditions is described.
Key words
aza-Michael reaction - nitrogen heterocycles - enones - water - high-pressure reaction
- 1 High-Pressure Organic Chemistry, Part 33. For Part 32, see:
Kumamoto K.Nakano K.Ichikawa Y.Kotsuki H. Synlett 2006, 1968 - Reviews:
-
2a
Perlmutter P. Conjugate Addition Reactions in Organic Synthesis Pergamon; New York: 1992. p.114 -
2b
Liu M.Sibi MP. Tetrahedron 2002, 58: 7991 -
2c
Vicario JL.Badía D.Carrillo L. Org. Prep. Proced. Int. 2005, 37: 513 -
2d
Xu L.-W.Xia C.-G. Eur. J. Org. Chem. 2005, 633 -
3a
Um I.-H.Lee E.-J.Min J.-S. Tetrahedron 2001, 57: 9585 -
3b
Wabnitz TC.Yu J.-Q.Spencer JB. Chem. Eur. J. 2004, 10: 484 -
4a
Ahn KH.Lee SJ. Tetrahedron Lett. 1994, 35: 1875 -
4b
Sibi MP.Shay JJ.Liu M.Jasperse CP. J. Am. Chem. Soc. 1998, 120: 6615 -
4c
Sibi MP.Liu M. Org. Lett. 2000, 2: 3393 -
4d
Sibi MP.Liu M. Org. Lett. 2001, 3: 4181 -
4e
Azizi A.Saidi MR. Tetrahedron 2004, 60: 383 -
5a
Xu L.-W.Li L.Xia C.-G.Zhou S.-L.Li J.-W.Hu X.-X. Synlett 2003, 2337 -
5b
Chaudhuri MK.Hussain S.Kantam ML.Neelima B. Tetrahedron Lett. 2005, 46: 8329 - 6
Gandelman M.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 2393 -
7a
Falborg L.Jørgensen KA. J. Chem. Soc., Perkin Trans. 1 1996, 2823 -
7b
Sugihara H.Daikai K.Jin XL.Furuno H.Inanaga J. Tetrahedron Lett. 2002, 43: 2735 -
7c
Kawatsura M.Aburatani S.Uenishi J. Tetrahedron 2007, 63: 4172 -
8a
Pérez M.Pleixats R. Tetrahedron 1995, 51: 8355 -
8b
Xu L.-W.Xia C.-G.Hu XX. Chem. Commun. 2003, 2570 -
8c
Xu L.-W.Li L.Xia C.-G. Helv. Chim. Acta 2004, 87: 1522 -
9a
Zhuang W.Hazell RG.Jørgensen KA. Chem. Commun. 2001, 1240 -
9b
Cardillo G.Gentilucci L.Gianotti M.Kim H.Perciaccante R.Tolomelli A. Tetrahedron: Asymmetry 2001, 12: 2395 -
9c
Wabnitz TC.Spencer JB. Tetrahedron Lett. 2002, 43: 3891 -
9d
Xu L.-W.Li J.-W.Xia C.-G.Zhou S.-L.Hu X.-X. Synlett 2003, 2425 -
9e
Kantam ML.Neeraja V.Kavita B.Neelima B.Chaudhuri MK.Hussain S. Adv. Synth. Catal. 2005, 347: 763 -
9f
Munro-Leighton C.Blue ED.Gunnoe TB. J. Am. Chem. Soc. 2006, 128: 1446 -
9g
Reddy KR.Kumar NS. Synlett 2006, 2246 - 10 See ref. 4d and:
Nakama K.Seki S.Kanemasa S. Tetrahedron Lett. 2002, 43: 829 - 11
Yamagiwa N.Qin H.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 13419 -
12a
Firouzabadi H.Iranpoor N.Jafarpour M.Ghaderi A. J. Mol. Catal. A: Chem. 2006, 252: 150 -
12b
Hashemi MM.Eftekhari-Sis B.Abdollahifar A.Khalili B. Tetrahedron 2006, 62: 672 -
13a
Gaunt MJ.Spencer JB. Org. Lett. 2001, 3: 25 -
13b
Kawatsura M.Hartwig JF. Organometallics 2001, 20: 1960 -
13c
Takasu K.Nishida N.Ihara M. Synlett 2004, 1844 -
13d
Xu L.-W.Xia C.-G. Synthesis 2004, 2191 -
13e
Zhang H.Zhang Y.Liu L.Xu H.Wang Y. Synthesis 2005, 2129 -
13f
Phua PH.Mathew SP.White AJP.de Vries JG.Blackmond DG.Hii KK. Chem. Eur. J. 2007, 13: 4602 -
14a
Loh T.-P.Wei L.-L. Synlett 1998, 975 -
14b
Kantam ML.Roy M.Roy S.Subhas MS.Sreedhar B.Choudary BM.Lal De R. J. Mol. Catal. A: Chem. 2007, 265: 244 -
15a
Matsubara S.Yoshioka M.Utimoto K. Chem. Lett. 1994, 23: 827 -
15b
Jenner G. Tetrahedron Lett. 1995, 36: 233 -
15c
Bartoli G.Bosco M.Marcantoni E.Petrini M.Sambri L.Torregiani E. J. Org. Chem. 2001, 66: 9052 -
15d
Saha B.Das D.Banerji B.Iqbal J. Tetrahedron Lett. 2002, 43: 6467 -
15e
Bartoli G.Bartolacci M.Giuliani A.Marcantoni E.Massaccesi M.Torregiani E. J. Org. Chem. 2005, 70: 169 -
15f
Reboule I.Gil R.Collin J. Tetrahedron Lett. 2005, 46: 7761 -
15g
Varala R.Sreelatha N.Adapa SR. Synlett 2006, 1549 - 16
Kobayashi S.Kakumoto K.Sugiura M. Org. Lett. 2002, 4: 1319 -
17a
Varala R.Alam MM.Adapa SR. Synlett 2003, 720 -
17b
Srivastava N.Banik BK. J. Org. Chem. 2003, 68: 2109 -
18a
Martín-Aranda RM.Vicente-Rodríguez MA.López-Pestana JM.López-Peinado AJ.Jerez A.López-González J.Banares-Munoz MA. J. Mol. Catal. A: Chem. 1997, 124: 115 -
18b
Shaikh NS.Deshpande VH.Bedekar AV. Tetrahedron 2001, 57: 9045 -
18c
Basu B.Das P.Hossain I. Synlett 2004, 2630 -
18d
Raje VP.Bhat RP.Samant SD. Tetrahedron Lett. 2005, 46: 835 -
18e
Zahouily M.Bahlaouan W.Bahlaouan B.Rayadh A.Sebti S. ARKIVOC 2005, (xiii): 150 -
18f
Kantam ML.Neelima B.Reddy ChV. J. Mol. Catal. A: Chem. 2005, 241: 147 -
19a
Ménand M.Dalla V. Synlett 2005, 95 -
19b
Yang L.Xu L.-W.Xia C.-G. Tetrahedron Lett. 2005, 46: 3279 -
20a
Xu L.-W.Xia C.-G. Tetrahedron Lett. 2004, 45: 4507 -
20b
Khalafi-Nezhad A.Zarea A.Soltani Rad MN.Mokhtari B.Parhami A. Synthesis 2005, 419 -
20c
Qu G.-R.Zhang Z.-G.Geng M.-W.Xia R.Zhao L.Guo H.-M. Synlett 2007, 721 -
20d
Yeom C.-E.Kim MJ.Kim BM. Tetrahedron 2007, 63: 904 -
20e
Han X. Tetrahedron Lett. 2007, 48: 2845 -
20f
Liu BK.Wu Q.Qian XQ.Lv DS.Lin XF. Synthesis 2007, 2653 -
21a
Chen YK.Yoshida M.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 9328 -
21b
Dinér P.Nielsen M.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 1983 -
21c
Wang J.Zu L.Li H.Xie H.Wang W. Synthesis 2007, 2576 -
22a
Goumri-Magnet S.Guerret O.Gornitzka H.Cazaux JB.Bigg D.Palacios F.Bertrand G. J. Org. Chem. 1999, 64: 3741 -
22b
Fetterly BM.Jana NK.Verkade JG. Tetrahedron 2006, 62: 440 -
22c
Raje VP.Bhat RP.Samant SD. Synlett 2006, 2676 - 23
Yao S.-P.Lu D.-S.Wu Q.Cai Y.Xu S.-H.Lin X.-F. Chem. Commun. 2004, 2006 ; and references cited therein -
24a
Moghaddam FM.Mohammadi M.Hosseinnia A. Synth. Commun. 2000, 30: 643 -
24b
Yadav JS.Reddy BVS.Basak AK.Narsaiah AV. Chem. Lett. 2003, 32: 988 -
24c
Xu L.-W.Li J.-W.Zhou S.-L.Xia C.-G. New J. Chem. 2004, 28: 183 -
24d
Firouzabadi H.Iranpoor N.Jafari AA. Adv. Synth. Catal. 2005, 347: 655 -
24e
Jakubec P.Berkes D.Kolarovic A.Povazanec F. Synthesis 2006, 4032 -
24f
Surendra K.Krishnaveni NS.Sridhar R.Rama Rao K. Tetrahedron Lett. 2006, 47: 2125 -
24g
Yang L.Xu L.-W.Zhou W.Li L.Xia C.-G. Tetrahedron Lett. 2006, 47: 7723 -
24h
Amore KM.Leadbeater NE.Miller TA.Schmink JR. Tetrahedron Lett. 2006, 47: 8583 -
24i
Ranu BC.Banerjee S. Tetrahedron Lett. 2007, 48: 141 -
24j
Moran J.Dornan P.Beauchemin AM. Org. Lett. 2007, 9: 3893 -
24k
Polshettiwar V.Varma RS. Tetrahedron Lett. 2007, 48: 8735 -
24l
de Castries A.Escande A.Fensterbank H.Magnier E.Marrot J.Larpent C. Tetrahedron 2007, 63: 10330 - 25
Organic Reactions in Water: Principles, Strategies and Applications
Lindstroem UM. Blackwell Publishing; Oxford: 2007. - There is some controversy regarding organic reactions in or on water, see:
-
26a
Brogan AP.Dickerson TJ.Janda KD. Angew. Chem. Int. Ed. 2006, 45: 8100 -
26b
Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 8103 -
26c
Blackmond DG.Armstrong A.Coombe V.Wells A. Angew. Chem. Int. Ed. 2007, 46: 3798 - 27 Review:
Kotsuki H.Kumamoto K. Yuki Gosei Kagaku Kyokaishi 2005, 63: 770 - For the example of high-pressure-promoted aza-Michael reactions in water, see:
-
28a
Jenner G. J Phys. Org. Chem. 1999, 12: 619 - See also:
-
28b
Ref. 15b.
-
28c
Rulev AY.Yenil N.Pesquet A.Oulyadi H.Maddaluno J. Tetrahedron 2006, 62: 5411 - 30 Acetalization of ketones under weakly acidic conditions (1a, pK
a = 14.75 in DMSO) in the absence of any dehydrating agents is quite unique, and we are currently performing experiments to explore the general scope of this reaction. See also:
Kumamoto K.Ichikawa Y.Kotsuki H. Synlett 2005, 2254 - For recent examples of imidazole-catalyzed Morita-Baylis-Hillman reactions, see:
-
34a
Luo S.Zhang B.He J.Janczuk A.Wang PG.Cheng J.-P. Tetrahedron Lett. 2002, 43: 7369 -
34b
Gatri R.El Gaïed MM. Tetrahedron Lett. 2002, 43: 7835 -
34c
Luo S.Wang PG.Cheng JP. J. Org. Chem. 2004, 69: 555 -
34d
Luo S.Mi X.Wang PG.Cheng J.-P. Tetrahedron Lett. 2004, 45: 5171 -
34e
Davies HJ.Ruda AM.Tomkinson NCO. Tetrahedron Lett. 2007, 48: 1461 -
34f See also:
Ramachary DB.Mondal R. Tetrahedron Lett. 2006, 47: 7689
References and Notes
General Procedure A mixture of N-heterocycle (1, 1.1 mmol) and enone (2, 1.0 mmol) in distilled H2O (ca. 3.0 mL) was placed in a Teflon reaction vessel, and the mixture was allowed to react at 0.6 GPa and 60 °C for 20 h. After the mixture was cooled and the pressure was released, the mixture was extracted with CH2Cl2. The extracts were dried, concentrated, and purified by silica gel column chromatography (elution with CH2Cl2-i-PrOH) to afford the pure adduct 3.
31All new compounds gave satisfactory analytical and spectral data.
32The higher reactivity of purine (1g) at the N9 position is well established. For example, see ref. 6.
Compound 3q: mp 123-125 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1698, 1595, 1576, 1496, 1413 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.85 (1 H, dddd, J = 14.0, 12.0, 5.4, 3.6 Hz), 2.16-2.23 (1 H, m), 2.32-2.39 (1 H, m), 2.48-2.62 (3 H, m), 2.95 (1 H, ddt, J = 14.1, 4.9, 1.7 Hz), 3.26 (1 H, dd, J = 14.1, 11.7 Hz), 4.89 (1 H, tt, J = 11.5, 4.2 Hz), 8.13 (1 H, s), 8.98 (1 H, s), 9.17 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 22.0, 30.7, 40.5, 46.9, 54.4, 134.6, 143.2, 149.1, 150.9, 152.4, 206.3.
Compound 3r: mp 143-144 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1708, 1606, 1559, 1488, 1412 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.83-1.96 (1 H, m), 2.17-2.26 (1 H, m), 2.37 (1 H, ddt, J = 14.6, 11.2, 3.6 Hz), 2.45-2.57 (2 H, m), 2.58-2.66 (1 H, m), 2.96 (1 H, ddd, J = 14.2, 11.0, 1.0 Hz), 3.03 (1 H, ddt, J = 14.2, 5.1, 1.7 Hz), 4.79 (1 H, ddt, J = 10.9, 5.1, 3.9 Hz), 8.33 (1 H, s), 9.04 (1 H, s), 9.18 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 21.9, 31.3, 40.4, 47.6, 55.7, 124.4, 140.0, 145.5, 153.7, 161.0, 205.3.
Compound 3d: mp 69-70 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1685, 1596, 1521, 1448 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.60 (2 H, t, J = 6.4 Hz), 4.65 (2 H, t, J = 6.4 Hz), 7.47 (2 H, m), 7.59 (1 H, tt, J = 7.3, 1.2 Hz), 7.91-7.95 (3 H, m), 8.23 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.9, 44.0, 128.0 (2×), 128.7 (2×), 133.7, 136.0, 144.0, 152.0, 196.5.
Compound 3e: mp 87-89 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1687, 1538 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 3.50 (2 H, t, J = 6.1 Hz), 4.55 (2 H, t, J = 6.1 Hz), 7.50 (2 H, t, J = 7.8 Hz), 7.62 (1 H, m), 7.93 (2 H, m), 8.34 (2 H, s). 13C NMR (100 MHz, CDCl3): δ = 39.2, 39.7, 128.0 (2×), 128.9 (2×), 134.2, 135.6, 143.2 (2×), 195.8.
α,β-Unsaturated esters were found to be mostly unreactive as Michael acceptors under the standard conditions (in H2O, 0.6 GPa, 60 °C, 20 h), except for methyl acrylate (87% conversion yield).