Synlett 2008(13): 2061-2063  
DOI: 10.1055/s-2008-1077960
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Nickel-Catalyzed Cross-Coupling Reaction of Allyl- and Benzylzinc with Alkenyl Sulfides

Yoko Babaa, Akio Toshimitsua, Seijiro Matsubara*b
a Innovative Collaboration Center, Kyoto University, Kyoutodaigaku-katsura, Nishikyo, Kyoto 615-8520, Japan
b Department of Material Chemistry, Kyoto University, Kyoutodaigaku-katsura, Nishikyo, Kyoto 615-8510, Japan
Fax: +81(75)3832459; e-Mail: matsubar@orgrxn.mbox.media.kyoto-u.ac.jp;
Further Information

Publication History

Received 15 April 2008
Publication Date:
15 July 2008 (online)

Abstract

Alkenyl sulfides can be utilized for nickel-catalyzed cross-coupling reactions with allyl- and benzylzinc reagents.

    References and Notes

  • 1a Metal-Catalyzed Cross-Coupling Reactions   2nd ed.: 
    de Meijere
    A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 1b Cross-Coupling Reactions: A Practical Guide, In Topics in Current Chemistry   Vol. 219:  Miyaura N. Springer; Berlin: 2002. 
  • 2a Ritter K. Synthesis  1993,  735 
  • 2b Negishi E. Oweczarczyk Z. Swanson DR. Tetrahedron Lett.  1991,  32:  4453 
  • 2c Dunet G. Knochel P. Synlett  2006,  407 
  • 3 Lee K. Lee J. Lee PH. J. Org. Chem.  2002,  67:  8265 
  • 4 Stille JK. Angew. Chem. Int. Ed. Engl.  1986,  25:  508 
  • 5a

    Treatment of (E)-1-phenylthio-2-phenylethene (1a) with allylmagnesium bromide in the presence of nickel catalyst (the same reaction conditions as in entry 9 in Table  [¹] ) did not afford 3a.

  • 5b

    Treatment of (E)-1-bromo-2-phenylethene with allylzinc chloride in the presence of nickel catalyst (the same reaction conditions as in entry 9 in Table  [¹] ) gave 3a in 63% yield.

  • 6a Okamura H. Miura M. Takei H. Tetrahedron Lett.  1979,  20:  43 
  • 6b Flandanese V. Marchese G. Mascolo G. Naso F. Ronzini L. Tetrahedron Lett.  1988,  29:  3705 
  • 6c Itami K. Higashi S. Mineno M. Yoshida J. Org. Lett.  2005,  7:  1219 
  • 7 Takagi K. Hayama N. Sasaki K. Bull. Chem. Soc. Jpn.  1984,  57:  1887 
  • 8 Andersen NG. Keay BA. Chem. Rev.  2001,  101:  997 
  • 9a Onaka N. Goto T. Mukaiyama T. Tetrahedron Lett.  1979,  20:  1483 
  • 9b Quisenberry KT. Smith JD. Voehler M. Stec DF. Hanusa TP. Brennessel WW. J. Am. Chem. Soc.  2005,  127:  4376 
  • 10a Metzger A. Scade AA. Knochel P. Org. Lett.  2008,  10:  1107 
  • 10b Soorukram D. Boudet N. Malakhov V. Knochel P. Synthesis  2007,  3915 
  • 11 Ogawa A. Ikeda T. Kimura K. Hirao T. J. Am. Chem. Soc.  1999,  121:  5108 
12

The use of Ni(0) catalyst which was prepared from Ni(II) and BuLi was not so effective. On the contrary Ni(II) catalyst gave the product with a reasonable yield. In this case, the formation of a radical species from benzylnickel intermediate may be a possible route. In fact, the addition of TEMPO interfered with the reaction. In the reaction of alkenyl sulfide with arylmethylzinc bromide (entry 4 in Table  [³] ) addition of TEMPO (1 equiv) resulted in the low yield of 6a (14%).

13

Preparation of ( E )-1-Phenyl-1,4-pentadiene (3a): To a solution of nickel(II) chloride (0.10 mmol) and tris(2-furyl)phosphine (0.20 mmol) in THF (0.5 mL) under argon, n-BuLi (0.2 mmol, 1.6 M in hexane) was added and stirred for 15 min at 25 ˚C. To the mixture, after a solution of (E)-1-phenylthio-2-phenylethene (1a) in THF (1.0 mL) was added, allylzinc chloride (2a; 2.0 mmol, 0.7 M in THF) was added dropwise. The resulting mixture was stirred for 4 h at 60 ˚C. After aqueous workup, purification by silica gel column chromatography gave (E)-1-phenyl-1,4-pentadiene (3a) in 99% yield. ¹H NMR (300 MHz, CDCl3): δ = 7.17-7.37 (m, 5 H), 6.42 (d, J = 15.9 Hz, 1 H), 6.23 (dt, J = 6.3, 15.9 Hz, 1 H), 5.90 (ddt, J = 6.3, 10.5, 15.9 Hz, 1 H), 5.05-5.16 (m, 2 H), 2.97 (ddt, J = 1.5, 6.3, 6.3 Hz, 2 H).
Preparation of ( E )-1,3-Diphenyl-1-propene (3h): To a solution of NiCl2(dppe) (0.05 mmol) in THF (0.5 mL) under argon, benzylzinc bromide (2.0 mmol, 0.7 M in THF) was added dropwise, and then a solution of (E)-1-phenylthio-2-phenylethene (1a; 1.0 mmol) in THF (1.0 mL) was added. The resulting mixture was stirred for 4 h at 60 ˚C. After aqueous workup, purification by silica gel column chromatography gave (E)-1,3-diphenyl-1-propene in 78% yield. ¹H NMR (300 MHz, CDCl3): δ = 7.17-7.38 (m, 10 H), 6.46 (d, J = 15.9 Hz, 1 H), 6.36 (dt, J = 6.3, 15.9 Hz, 1 H), 3.55 (d, J = 6.3 Hz, 2 H).