Subscribe to RSS
DOI: 10.1055/s-2008-1078270
Total Synthesis of Largazole
Publication History
Publication Date:
21 August 2008 (online)
Abstract
The stereocontrolled total synthesis of largazole was accomplished, unambiguously confirming its structure. Key steps included the use of the Nagao thiazolidinethione auxiliary for a diastereoselective acetate aldol reaction, thiazoline-thiazole formation, and macrolactamization by use of the Mukaiyama reagent.
Key words
largazole - cyclodepsipeptide - total synthesis - antitumor - macrolactamization
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Tan LT. Phytochemistry (Elsevier) 2007, 68: 954 -
1b
Simmons TL.Andrianasolo E.McPhail K.Flatt P.Gerwick WH. Mol. Cancer Ther. 2005, 4: 333 -
1c
Singh S.Kate BN.Banerjee UC. Crit. Rev. Biotechnol. 2005, 25: 73 -
1d
Luesch H.Harrigan GG.Goetz G.Horgen FD. Curr. Med. Chem. 2002, 9: 1791 -
1e
Proksch P.Edrada RA.Ebel R. Appl. Microbiol. Biotechnol. 2002, 59: 125 -
1f
Burja AM.Banaigs B.Abou-Mansour E.Burgess JG.Wright PC. Tetrahedron 2001, 57: 9347 -
1g
Gerwick WH.Tan LT.Sitachitta N. The Alkaloids Vol. 57:Cordell GA. Academic Press; San Diego: 2001. p.75-184 -
1h
Fusetani N. Drugs from the Sea Karger; Basel: 2000. -
2a
Gerwick WH.Proteau PJ.Nagle DG.Hamel E.Blokhin A.Slate DL. J. Org. Chem. 1994, 59: 1243 -
2b
Muir JC.Pattenden G.Ye T. J. Chem. Soc., Perkin Trans. 1 2002, 20: 2243 -
2c
Poncet J. Curr. Pharm. Des. 1999, 5: 139 -
3a
Luesch H.Yoshida WY.Moore RE.Paul VJ.Corbett TH. J. Am. Chem. Soc. 2001, 123: 5418 -
3b
Marquez BL.Watts KS.Yokochi A.Roberts MA.Verdier-Pinard P.Jimenez JI.Hamel E.Scheuer PJ.Gerwick WH. J. Nat. Prod. 2002, 65: 866 -
4a
Wu M.Okino T.Nogle LM.Marquez BL.Williamson RT.Sitachitta N.Berman FW.Murray TF.McGough K.Jocobs R.Colsen K.Asano T.Yokokawa F.Shioiri T.Gerwick WH. J. Am. Chem. Soc. 2000, 122: 12041 -
4b
Orjala J.Nagle DG.Hsu V.Gerwick WH. J. Am. Chem. Soc. 1995, 117: 8281 -
5a
Sielaff H.Christiansen G.Schwecke T. Idrugs 2006, 9: 119 -
5b
Frenz JL.Kohl AC.Kerr RG. Expert Opin. Ther. Pat. 2004, 14: 17 -
5c
Proksch P.Edrada RA.Ebel R. Appl. Microbiol. Biotechnol. 2002, 59: 125 -
6a
Chen Z.Ye T. New J. Chem. 2006, 30: 518 -
6b
Pang HW.Xu ZS.Chen ZY.Ye T. Lett. Org. Chem. 2005, 2: 699 -
6c
Peng YG.Pang HW.Xu ZS.Ye T. Lett. Org. Chem. 2005, 2: 703 -
6d
Peng YG.Pang HW.Ye T. Org. Lett. 2004, 6: 3781 -
6e
Xu ZS.Chen ZY.Ye T. Tetrahedron: Asymmetry 2004, 15: 355 -
6f
Xu ZS.Peng YG.Ye T. Org. Lett. 2003, 5: 2821 -
6g
Chen ZY.Deng JG.Ye T. ARKIVOC 2003, (vii): 268 -
7a
Chen J.Forsyth CJ. Org. Lett. 2003, 5: 1281 ; and references cited therein -
7b
Cetusic JRP.Green FR.Graupner PR.Oliver MP. Org. Lett. 2002, 4: 1307 -
7c
Pettit GR.Singh SB.Hogan F.Lloyd-Williams P.Herald DL.Burkett DD.Clewlow PJ. J. Am. Chem. Soc. 1989, 111: 5463 - 8
Taori K.Paul VJ.Luesch H. J. Am. Chem. Soc. 2008, 130: 1806 -
9a
Demel P.Keller M.Breit B. Chem. Eur. J. 2006, 12: 6669 -
9b
Eberle MK.Weber HP. J. Org. Chem. 1988, 53: 231 -
9c
Boulaajaj S.Le Gall T.Vaultier M.Gree R.Toupet L.Carrie R. Tetrahedron Lett. 1987, 28: 1761 -
10a
Nagao Y.Hagiwara Y.Kumagai T.Ochiai M.Inoue T.Hashimoto K.Fujita E. J. Org. Chem. 1986, 51: 2391 -
10b
White JD.Martin WHC.Lincoln C.Yang J. Org. Lett. 2007, 9: 3481 -
10c
Janssen D.Kalesse M. Synlett 2007, 2667 -
10d
Scheerer JR.Lawrence JF.Wang GC.Evans DA. J. Am. Chem. Soc. 2007, 129: 8968 -
10e
Smith AB.Simov V. Org. Lett. 2006, 8: 3315 -
10f
Paterson I.Steven A.Luckhurst CA. Org. Biomol. Chem. 2004, 2: 3026 -
10g
Romo D.Choi NS.Li S.Buchler I.Shi Z.Liu JO. J. Am. Chem. Soc. 2004, 126: 10582 -
10h
Velazquez F.Olivo HF. Curr. Org. Chem. 2002, 6: 303 -
10i
Sinz CJ.Rychnovsky SD. Angew. Chem. Int. Ed. 2001, 40: 3224 -
10j
Aiguadé J.González A.Urpí F.Vilarrasa J. Tetrahedron Lett. 1996, 37: 8949 -
11a
Boyce RJ.Mulqueen GC.Pattenden G. Tetrahedron 1995, 51: 7321 -
11b
Pattenden G.Thom SM.Jones MF. Tetrahedron 1993, 49: 2131 - 12
McDougal PG.Rico JG.Oh Y.-I.Condon BD. J. Org. Chem. 1986, 51: 3388 - 13
Dhokte UP.Khau VV.Hutchison DR.Martinelli MJ. Tetrahedron Lett. 1998, 39: 8771 -
15a
Aguilar E.Meyers AI. Tetrahedron Lett. 1994, 35: 2473 -
15b
Bredenkamp MW.Holzapfel CW.van Zyl WJ. Synth. Commun. 1990, 20: 2235 - 16
Bernier J.-L.Houssin R.Hénichart J.-P. Tetrahedron 1986, 42: 2695 - 17
Yamato E.Sugasawa S. Tetrahedron Lett. 1970, 11: 4383 - 18
Rabanal F.DeGrado WF.Dutton PL. Tetrahedron Lett. 1996, 1347
References and Notes
Procedure for
the Preparation of Intermediate 13
(R)-3-Acetyl-4-isopropyl-1,3-thiazolidine-2-thione
(12, 821 mg, 4.0 mmol) was dissolved in
CH2Cl2 (10 mL), TiCl4 (751 mg,
4.0 mol) was added at 0 ˚C. After 5 min, the reaction was
brought to -78 ˚C, DIPEA (516 mg, 4.0
mmol) was added via a syringe over 10 min. The reaction was kept
at -78 ˚C for 2 h before aldehyde 11 (428.3
mg, 2.0 mmol) in CH2Cl2 (3 mL) was added dropwise.
Saturated NH4Cl (20 mL) was added to the reaction mixture
and CH2Cl2 (3 × 30 mL) was used for
extraction. The combined organic phases were dried over anhyd MgSO4 and
concentrated in vacuo to give the crude product, which was purified
by chromatogra-phy on SiO2, eluting with EtOAc-hexane
(1:8), to afford the desired compound 13 (692.1
mg, 83%) along with the minor isomer (53.2 mg, 6%).
Cyclodepsipeptide
20
[α]D
²0 17.5
(c 0.2, MeOH). ¹H
NMR (500 MHz, CDCl3): δ = 7.75 (s,
1 H), 7.18 (d, 1 H, J = 9.3
Hz), 6.50 (dd, 1 H, J = 2.7, 9.0
Hz), 5.88 (dd, 1 H, J = 6.9,
14.6 Hz), 5.65-5.71 (m, 1 H), 5.54 (dd, 1 H, J = 6.7, 15.5
Hz), 5.26 (dd, 1 H, J = 9.4,
17.6 Hz), 4.60 (dd, 1 H, J = 3.6,
9.4 Hz), 4.27 (dd, 1 H, J = 3.1, 17.6
Hz), 4.03 (d, 1 H, J = 11.3
Hz), 3.28 (t, 1 H, J = 10.5 Hz),
2.85 (dd, 1 H, J = 9.9,
16.3 Hz), 2.67-2.75 (m, 3 H), 2.37-2.46 (m, 2
H), 2.06-2.14 (m, 1 H), 1.86 (s, 3 H), 1.32 (s, 9 H), 0.68
(d, 3 H, J = 6.9
Hz), 0.53 (d, 3 H, J = 6.9
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 173.5,
169.3, 168.8, 167.9, 164.5, 147.4, 132.8, 128.1, 124.1, 84.3, 71.9,
57.7, 47.8, 43.2, 41.0, 40.4, 39.4, 34.0, 31.8, 29.9, 24.1, 18.8,
16.6. ESI-MS: m/z (%) = 585.17
(100.0), 607.15 (88.8). ESI-HRMS: m/z calcd
for C25H37N4O4S4 [M + H]+:
585.1698; found [M + H]+:
585.1689.
Procedure for
the Synthesis of Largazole (1)
Compound 20 (9.9 mg, 0.02 mmol) was dissolved in degassed
THF-H2O (v/v = 4:1,
2 mL) and treated with n-Bu3P
(6.1 mg, 0.03 mmol) at r.t. for 6 h. The reaction solution was made
up to 50 mL with EtOAc and dried over anhyd Na2SO4.
The free thiol intermediate was obtained after removal of solvent
in vacuo. The thiol intermediate was then dissolved in CH2Cl2 (5
mL), DIPEA (21.9 mg, 0.17 mmol), and octanoyl chloride (22 mg, 0.136
mmol) was added at 0 ˚C followed by a catalytic quantity
of DMAP. The reaction mixture was stirred at r.t. for 10 min and
then quenched by sat. NaHCO3 (5 mL). CH2Cl2 (3 × 30
mL) was used for extraction. The combined organic phases were dried over
anhyd Na2SO4 and concentrated in vacuo to
give the crude product. Purification with chromatography on SiO2, using
EtOAc-hexane (2:1), provided the target molecule 1 (8.2 mg, 0.0132 mmol, 78%).
[α]D
²0 18.5
(c 0.2, MeOH). ¹H
NMR (500 MHz, CDCl3): δ = 7.76 (s,
1 H), 7.15 (d, 1 H, J = 9.3
Hz), 6.46 (dd, 1 H, J = 2.6, 9.5
Hz), 5.80-5.84 (m, 1 H), 5.65-5.68 (m, 1 H), 5.51
(dd, 1 H, J = 7.1,
15.5 Hz), 5.29 (dd, 1 H, J = 9.4,
17.6 Hz), 4.61 (dd, 1 H, J = 3.3,
9.2 Hz), 4.27 (dd, 1 H, J = 2.8,
17.6 Hz), 4.05 (d, 1 H, J = 11.3Hz),
3.28 (d, 1 H, J = 11.3
Hz), 2.90 (t, 2 H, J = 7.2
Hz), 2.86 (dd, 1 H, J = 10.5,
16.5 Hz), 2.68 (dd, 1 H, J = 2.0,
16.3 Hz), 2.53 (t, 2 H, J = 7.4
Hz), 2.29-2.33 (m, 2 H), 2.07-2.13 (m, 1 H), 1.87
(s, 3 H), 1.62-1.66 (m, 2 H), 1.25-1.30 (m, 8
H), 0.87 (t, 3 H, J = 6.8
Hz), 0.69 (d, 3 H, J = 7.0
Hz), 0.51 (d, 3 H, J = 7.1
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 199.4,
173.5, 169.4, 168.9, 167.9, 164.6, 147.4, 132.7, 128.4, 124.2, 84.4,
72.1, 57.7, 44.1, 43.3, 41.1, 40.4, 34.2, 32.2, 31.6, 29.0, 28.9,
27.9, 25.6, 24.2, 22.6, 18.9, 16.6, 14.0. ESI-MS: m/z (%) = 623.23
(44.5) [M + H]+,
645.21 (100.0) [M + Na]+.
ESI-HRMS: m/z calcd for C29H43N4O5S3 [M + H]+:
623.2396; found: 623.2371 [M + H]+.