RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078277
K-10 Clay-Catalyzed Enol-Driven Decarboxylative Ring-Transformation Approach to Dihydro- and Tetrahydroquinolines from Carbohydrates
Publikationsverlauf
Publikationsdatum:
21. August 2008 (online)

Abstract
An original synthetic approach to 4-polyhydroxyalkylquinolines using unprotected d-glucose/d-xylose as biorenewable resources is reported. The synthetic protocol involves enol-driven Michael-type addition of cyclic ketones to aldose-derived 1,3-oxazin-2-ones followed by decarboxylative ring transformation to yield various novel 5,6-dihydro-/5,6,7,8-tetrahydro-4-polyhydroxyalkylquinolines and their 5-, 6-, or 8-one analogues. This is a one-pot montmorillonite K-10 clay-catalyzed process proceeding under solvent-free microwave irradiation conditions.
Key words
carbohydrates - mineral-catalyzed - microwaves - solvent-free - 1,3-oxazin-2-ones(thiones) - quinolines
- 1a
Van Straten NCR.Van Berkel THJ.Demont DR.Karstens W.-JF.Merkx R.Oosterom J.Schulz J.Van Someren RG.Timmers CM.van Zandvoort PM. J. Med. Chem. 2005, 48: 1697Reference Ris Wihthout Link - 1b
Gaillard S.Papamicael C.Marsais F.Dupas G.Levacher V. Synlett 2005, 441Reference Ris Wihthout Link - 1c
Foucaud B.Laube B.Schemm R.Kreimeyer A.Goeldner M.Betz H. J. Biol. Chem. 2003, 278: 24011Reference Ris Wihthout Link - 1d
Michael JP. Nat. Prod. Rep. 2003, 20: 476Reference Ris Wihthout Link - 1e
Katritzky A.Rachwal S.Rachwal B. Tetrahedron 1996, 52: 15031Reference Ris Wihthout Link - 2
Katritzky AR.Pozharskii AF. Handbook of Heterocyclic Chemistry 2nd ed.: Pergamon; Oxford: 2000. p.616 - 3
Eicher T.Hauptmann S. The Chemistry of Heterocycles Georg Thieme Verlag; Stuttgart: 1995. p.329 - 4
Huber-Emden H,Hubele A, andKlahre G. inventors; Ger. Patent ZA19710000791, 19710209.Reference Ris Wihthout Link - 5
Samosorn S.Bremner JB.Ball A.Lewis K. Bioorg. Med. Chem. 2006, 14: 857 - 6
Maignan S.Guilloteau J.Zhou-Liu Q.Clément-Mella C.Mikol V. J. Mol. Biol. 1998, 282: 359 - 7a
d’Angelo J.Mouscadet F.Desmäele D.Zouhiri F.Leh H. Pathol. Biol. 2001, 49: 237Reference Ris Wihthout Link - 7b
Zouhiri F.Desmäele D.d’Angelo J.Ourevitch M.Mouscadet JF.Leh H.Bret ML. Tetrahedron Lett. 2001, 42: 8189Reference Ris Wihthout Link - 8a
Cheng CH,Chen RM,Huang CW, andYang CC. inventors; U.S. Patent 20050025995A1.Reference Ris Wihthout Link - 8b
Thompson ME,Ma B, andDjurovich P. inventors; U.S. Patent 20050164031A1.Reference Ris Wihthout Link - 8c
Knowles DB, andKwong R. inventors; U.S. Patent 20050164030A1.Reference Ris Wihthout Link - 8d
Kim JL.Shin IS.Kim H. J. Am. Chem. Soc. 2005, 127: 1614Reference Ris Wihthout Link - 9a
Agrawal AK.Jenekhe SA. Chem. Mater. 1996, 8: 579Reference Ris Wihthout Link - 9b
Jenekhe SA.Lu L.Alam MM. Macromolecules 2001, 34: 7315Reference Ris Wihthout Link - 10a
Cho CS.Oh BH.Shim SC. Tetrahedron Lett. 1999, 40: 1499Reference Ris Wihthout Link - 10b
Zhou L.Zhang Y. J. Chem. Soc., Perkin Trans. 1 1998, 2899Reference Ris Wihthout Link - 10c
Larock RC.Kero M.-Y. Tetrahedron Lett. 1991, 32: 569Reference Ris Wihthout Link - 10d
Zhou L.Tu S.Shi D.Dai G.Chen W. Synthesis 1988, 851Reference Ris Wihthout Link - 10e
Larock RC.Babu S. Tetrahedron Lett. 1987, 28: 5291Reference Ris Wihthout Link - 10f
Ozawa F.Yanagihara H.Yamamoto A. J. Org. Chem. 1986, 51: 415Reference Ris Wihthout Link - 10g
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW. Pergamon; New York: 1996. p.167Reference Ris Wihthout Link - 10h
Cho CS.Oh BH.Kim TJ.Kim TJ.Shim SC. Chem. Commun. 2000, 1885Reference Ris Wihthout Link - 10i
Jiang B.Si YG. J. Org. Chem. 2002, 67: 9449Reference Ris Wihthout Link - 10j
Skraup H. Chem. Ber. 1880, 13: 2086Reference Ris Wihthout Link - 10k
Friedländer P. Chem. Ber. 1882, 15: 2572Reference Ris Wihthout Link - 10l
Mansake RH.Kulka M. Org. React. (N. Y.) 1953, 7: 59Reference Ris Wihthout Link - 10m
Linderman RJ.Kirollos KS. Tetrahedron Lett. 1990, 31: 2689Reference Ris Wihthout Link - 10n
Theoclitou ME.Robinson LA. Tetrahedron Lett. 2002, 43: 3907Reference Ris Wihthout Link - 11a
Cortese NA.Ziegler CB.Hrnjez BJ.Heck RF. J. Org. Chem. 1978, 43: 2952Reference Ris Wihthout Link - 11b
Hegedus LS.Allen GF.Bozell JJ.Waterman EL. J. Am. Chem. Soc. 1978, 100: 5800Reference Ris Wihthout Link - 11c
Kundu NG.Mahanty JS.Das P.Das B. Tetrahedron Lett. 1993, 34: 1625Reference Ris Wihthout Link - 11d
Cacchi S.Fabrizi G.Marinelli F. Synlett 1999, 401Reference Ris Wihthout Link - 12a
Diamond SE.Szalkiewicz A.Mares F. J. Am. Chem. Soc. 1979, 101: 490Reference Ris Wihthout Link - 12b
Watanabe Y.Yamamoto M.Shim SC.Mitsudo T.Takegami Y. Chem. Lett. 1979, 8: 1025Reference Ris Wihthout Link - 12c
Watanabe Y.Suzuki N.Shim SC.Yamamoto M.Mitsudo T.Takegami Y. Chem. Lett. 1980, 9: 429Reference Ris Wihthout Link - 12d
Boyle WJ.Mares F. Organometallics 1982, 1: 1003Reference Ris Wihthout Link - 12e
Abbiati G.Arcadi A.Marinelli F.Rossi E.Verdecchia M. Synlett 2006, 3218Reference Ris Wihthout Link - 13a
Watanabe Y.Tsuji Y.Suzuki N. Chem. Lett. 1981, 10: 1067Reference Ris Wihthout Link - 13b
Watanabe Y.Tsuji Y.Ohsugi Y. Tetrahedron Lett. 1981, 22: 2667Reference Ris Wihthout Link - 13c
Watanabe Y.Tsuji Y.Ohsugi Y.Shida J. Bull. Chem. Soc. Jpn. 1983, 56: 2452Reference Ris Wihthout Link - 13d
Watanabe Y.Tsuji Y.Shida J. Bull. Chem. Soc. Jpn. 1984, 57: 435Reference Ris Wihthout Link - 13e
Tsuji Y.Nishimura H.Huh K.-T.Watanabe Y. J. Organomet. Chem. 1985, 286: C44Reference Ris Wihthout Link - 13f
Tsuji Y.Huh K.-T.Watanabe Y. J. Org. Chem. 1987, 59: 1673Reference Ris Wihthout Link - 13g
Mierde HV.Ledoux N.Allaert B.Voort PVD.Drozdzak R.Vos DD.Verpoort F. New J. Chem. 2007, 31: 1572Reference Ris Wihthout Link - 13h
Martinez R.Ramón DJ.Yus M. Eur. J. Org. Chem. 2007, 1599Reference Ris Wihthout Link - 14
Watanabe Y.Takatsuki K.Shim SC.Mitsudo T.Takegami Y. Bull. Chem. Soc. Jpn. 1978, 51: 3397 - 15a
Yadav LDS.Rai A.Rai VK.Awasthi C. Tetrahedron Lett. 2008, 49: 687Reference Ris Wihthout Link - 15b
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 8033Reference Ris Wihthout Link - 15c
Yadav LDS.Rai VK. Tetrahedron 2007, 63: 6924Reference Ris Wihthout Link - 15d
Yadav LDS.Rai VK. Tetrahedron Lett. 2006, 47: 395Reference Ris Wihthout Link - 15e
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455Reference Ris Wihthout Link - 15f
Yadav LDS.Yadav S.Rai VK. Tetrahedron 2005, 61: 10013Reference Ris Wihthout Link - 16a
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2007, 1905Reference Ris Wihthout Link - 16b
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 4899Reference Ris Wihthout Link - 17
Renewable
Bioresources: Scope and Modification for Non-Food Applications
Stevens CV.Verhé RG. John Wiley and Sons; Chichester: UK, 2004. - 19
Audrieth LF.Ogg BA. The Chemistry of Hydrazines John Wiley and Sons, Inc.; New York: 1951.
References and Notes
General Procedure
for the Synthesis of 1,3-Oxazin-2-ones(thiones)
4: Thoroughly mixed d-xylose/d-glucose 1 (1 mmol),
semicarbazide hydrochloride/thiosemicarbazide 2 (1 mmol), sodium acetate (1 mmol) and
montmorillonite K-10 clay (0.10 g) in a 20-mL vial were subjected
to microwave irradiation in a CEM Discover Focused Microwave Synthesis
System for 10 min at 90 ˚C. After completion of the reaction
as indicated by TLC, H2O (10 mL) was added to precipitate
the crude product, which was recrystallized from EtOH to afford
analytically pure sample of 4.
Characterization Data of Representative Compounds: Compound 4a: white solid; yield: 82%;
mp 145-148 ˚C. IR (KBr): 3392, 3386, 3011, 1692
cm-¹. ¹H NMR (400
MHz, DMSO-d
6): δ = 4.11
(dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Ha = 5.4 Hz,
1 H, 2′Ha), 4.30 (dd, J
1
′
H,2
′
Ha = 5.4
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 1′H), 4.63 (dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 2′Hb), 4.93-5.21 (br s, 2
H, 2 × OH, exch. D2O), 7.48 (d, J
5H,6H = 8.1 Hz,
1 H, 5-H), 7.89 (d, J
5H,6H = 8.1
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 64.5,
65.3, 73.7, 86.2, 105.9, 174.5. MS (FAB): m/z = 158 [M + H+].
Anal. Calcd for C6H7NO4: C, 45.86;
H, 4.49; N, 8.91. Found: C, 46.17; H, 4.58; N, 8.79.
Compound 4b: white solid; yield: 80%;
mp 159-161 ˚C. IR (KBr): 3391, 3386, 3009, 1051
cm-¹. ¹H NMR (400
MHz, DMSO-d
6): δ = 4.13
(dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Ha = 5.3 Hz,
1 H, 2′Ha), 4.29 (dd, J
1
′
H,2
′
Ha = 5.3
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 1′H), 4.66 (dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 2′Hb), 4.93-5.25 (br s, 2
H, 2× OH, exch. D2O), 7.47 (d, J
5H,6H = 8.2
Hz, 1 H, 5-H), 7.91 (d, J
5H,6H = 8.2
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ= 64.2,
65.4, 73.3, 86.5, 105.7, 192.3. MS (FAB): m/z = 174 [M + H+].
Anal. Calcd for C6H7NO3S: C, 41.61;
H, 4.07; N, 8.09. Found: C, 41.86; H, 4.21; N, 7.88.
Compound 4c: white solid; yield: 79%;
mp 153-155 ˚C. IR (KBr): 3399-3382, 3008,
1689 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 3.88
(ddd, J
2
′
H,3
′
Ha = 5.4
Hz, J
1
′
H,2
′
H = 4.6
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 2′H), 4.03 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Ha = 5.4
Hz, 1 H, 3′Ha), 4.37 (d, J
1
′
H,2
′
H = 4.6
Hz, 1 H, 1′H), 4.59 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 3′Hb), 5.01-5.37 (br s, 3
H, 3 × OH, exch. D2O), 7.51 (d, J
4H,5H = 8.1 Hz,
1 H, 5-H), 7.85 (d, J
4H,5H = 8.1
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 64.3,
65.9, 71.7, 73.5, 86.5, 106.3, 174.8. MS (FAB): m/z = 188 [M + H+]. Anal.
Calcd for C7H9NO5: C, 44.92; H,
4.85; N, 7.48. Found: C, 44.69; H, 4.73; N, 7.73.
Compound 4d: white solid; yield: 85%;
mp 141-142 ˚C. IR (KBr): 3398-3382, 3011,
1055 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 3.89
(ddd, J
2
′
H,3
′
Ha = 5.4
Hz, J
1
′
H,2
′
H = 4.7
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 2′H), 4.06 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Ha = 5.4
Hz, 1 H, 3′Ha), 4.34 (d, J
1
′
H,2
′
H = 4.7
Hz, 1 H, 1′H), 4.63 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 3′Hb), 5.06-5.38 (br s, 3
H, 3 × OH, exch. D2O), 7.54 (d, J
4H,5H = 8.1 Hz,
1 H, 5-H), 7.81 (d, J
4H,5H = 8.1
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 64.7,
65.5, 71.5, 73.8, 86.7, 106.1, 192.7. MS (FAB): m/z = 204 [M + H+]. Anal.
Calcd for C7H9NO4S: C, 41.37; H,
4.46; N, 6.89. Found: C, 41.68; H, 4.31; N, 7.08.
General Procedure
for the Synthesis of 4-Poly-hydroxyalkylquinolines 6: An intimate,
solvent-free mixture of 1,3-oxazin-2-one(thione) 4 (2.4
mmol), cyclic ketone 5 (2.4 mmol) and montmorillonite
K-10 clay (0.25 g) in a 20-mL vial was subjected to MW irradiation
in a CEM Discover Focused Microwave Synthesis System at 90 ˚C
for 9-14 min. After completion of the reaction as indicated
by TLC, H2O (10 mL) was added to precipitate the crude product,
which was recrystallized from EtOH to give an analytically pure
sample of 6 as a white solid.
Characterization Data of Representative Compounds: Compound 6a: white solid; yield: 91%; mp
187-189 ˚C. IR (KBr): 3393, 3003, 1598, 1579,
1457 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 2.13-2.32
(m, 4 H, 5-CH2, 6-CH2), 3.74 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Ha = 5.5
Hz, 1 H, 2′Ha), 4.18 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 2′Hb), 4.29 (dd, J
1
′
H,2
′
Ha = 5.5
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 1′H), 4.99-5.13 (br s, 2 H, 2 × OH,
exch. D2O), 5.76 (m, 1 H, 7-H), 6.89 (d, J
7H,8H = 6.1 Hz,
1 H, 8-H), 7.92 (d, J
2H,3H = 7.7
Hz, 1 H, 2-H), 8.07 (d, J
2H,3H = 7.7
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.9,
28.8, 64.1, 70.3, 121.9, 123.5, 130.5, 135.5, 144.8, 147.9, 153.1.
MS (FAB): m/z = 192 [M + H+].
Anal. Calcd for C11H13NO2: C, 69.09;
H, 6.85; N, 7.32. Found: C, 69.45; H, 6.71; N, 7.65.
Compound 6b: white solid; yield: 83%; mp
176-178 ˚C. IR (KBr): 3380-3398, 3009,
1603, 1582, 1455 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.13-2.32
(m, 4 H, 5-CH2, 6-CH2), 3.85 (ddd, J
2
′
H,3
′
Ha = 5.3
Hz, J
1
′
H,2
′
H = 4.6
Hz, J
2
′
H,3
′
Hb = 2.8
Hz, 1 H, 2′H), 4.05 (dd, J
3
′
Ha,3
′
Hb = 10.3
Hz, J
2
′
H,3
′
Ha = 5.3 Hz,
1 H, 3′Ha), 4.29 (d, J
1
′
H,2
′
H = 4.7
Hz, 1 H, 1′H), 4.56 (dd, J
3
′
Ha,3
′
Hb = 10.3
Hz, J
2
′
H,3
′
Hb = 2.8
Hz, 1 H, 3′Hb), 4.99-5.16 (br s, 3
H, 3 × OH, exch. D2O), 5.78 (m, 1 H, 7-H), 6.85
(d, J
7H,8H = 6.2
Hz, 1 H, 8-H), 7.95 (d, J
2H,3H = 7.7
Hz, 1 H, 2-H), 8.08 (d, J
2H,3H = 7.7
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.8,
28.9, 64.5, 70.1, 73.5, 121.7, 123.8, 130.1, 135.5, 144.9, 147.6,
153.2. MS (FAB): m/z = 222 [M + H+].
Anal. Calcd for C12H15NO3: C, 65.14;
H, 6.83; N, 6.33. Found: C, 64.86; H, 6.61; N, 6.55.
Compound 6e: white solid; yield: 89%; mp
203-205 ˚C. IR (KBr): 3395, 2998, 1693, 1601,
1585, 1451 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.18
(m, 2 H, 6-CH2), 2.67 (t, J
5H,6H = 6.3
Hz, 2 H, 5-CH2), 2.91 (t, J
6H,7H = 5.8
Hz, 2 H,
7-CH2), 3.71 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Ha = 5.5
Hz, 1 H, 2′Ha), 4.12 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 2′Hb), 4.23 (dd, J
1
′
H,2
′
Ha = 5.5
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 1′H), 5.03-5.19 (br s, 2 H, 2 × OH,
exch. D2O), 7.89 (d, J
2H,3H = 7.6
Hz, 1 H, 2-H), 8.03 (d, J
2H,3H = 7.6
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.7,
25.2, 44.1, 63.5, 70.5, 129.5, 131.7, 145.9, 148.3, 155.1, 192.5.
MS (FAB): m/z = 208 [M + H+].
Anal. Calcd for C11H13NO3: C, 63.76; H,
6.32; N, 6.76. Found: C, 63.49; H, 6.61; N, 6.93.
Compound 6g: white solid; yield: 91%; mp
196-198 ˚C. IR (KBr): 3393, 2998, 1695, 1605,
1581, 1458 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.21
(m, 2 H, 7-CH2), 2.66 (t, J
7H,8H =
6.3 Hz, 2 H, 8-CH2), 2.92 (t, J
6H,7H = 5.7
Hz, 2 H, 6-CH2), 3.74 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Ha = 5.3
Hz, 1 H, 2′Ha), 4.11 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 2′Hb), 4.28 (dd, J
1
′
H,2
′
Ha = 5.3
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 1′H), 5.07-5.18 (br s, 2 H, 2 × OH,
exch. D2O), 7.85 (d, J
2H,3H = 7.5
Hz, 1 H, 2-H), 8.04 (d, J
2H,3H = 7.5
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.9,
25.1, 44.6, 63.1, 70.8, 129.3, 131.7, 145.5, 148.3, 155.2, 192.3.
MS (FAB): m/z = 208 [M + H+].
Anal. Calcd for C11H13NO3: C, 63.76; H,
6.32; N, 6.76. Found: C, 63.93; H, 6.51; N, 6.59.