Thromb Haemost 2007; 97(01): 3-4
DOI: 10.1160/TH06-11-0662
Editorial Focus
Schattauer GmbH

Antioxidative defense in endothelial cells: New kids on the block

Henning Morawietz
1   Department of Vascular Endothelium and Microcirculation, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
› Author Affiliations
Further Information

Publication History

Received 23 November 2006

Accepted 23 November 2006

Publication Date:
28 November 2017 (online)

 

 
  • References

  • 1 Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal 2003; 5: 171-180.
  • 2 Duerrschmidt N, Wippich N, Goettsch W. et al Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 2000; 269: 713-717.
  • 3 Gorlach A, Brandes RP, Nguyen K. et al A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 2000; 87: 26-32.
  • 4 Guzik TJ, West NE, Black E. et al Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000; 86: E85-90.
  • 5 Sorescu D, Weiss D, Lassegue B. et al Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002; 105: 1429-1435.
  • 6 Griendling KK, Minieri CA, Ollerenshaw JD. et al Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141-1148.
  • 7 Zhang H, Schmeisser A, Garlichs CD. et al Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membranebound NADH-/NADPH-oxidases. Cardiovasc Res 1999; 44: 215-222.
  • 8 Rueckschloss U, Quinn MT, Holtz J. et al Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2002; 22: 1845-1851.
  • 9 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494-501.
  • 10 Li JM, Fan LM, Christie MR. et al Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 2005; 25: 2320-2330.
  • 11 Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003; 24: 471-478.
  • 12 Nascimento-Silva V, Arruda MA, Barja-Fidalgo C. et al Aspirin-triggered lipoxin A 4 blocks reactive oxygen species generation in endothelial cells: A novel antioxidative mechanism. Thromb Haemost 2007; 97: 88-98.
  • 13 Romano M. Lipid mediators: lipoxin and aspirintriggered 15-epi-lipoxins. Inflamm Allergy Drug Targets 2006; 5: 81-90.
  • 14 Machado FS, Johndrow JE, Esper L. et al Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 2006; 12: 330-334.
  • 15 Perneby C, Wallen NH, Rooney C. et al Dose-and time-dependent antiplatelet effects of aspirin. Thromb Haemost 2006; 95: 652-658.
  • 16 Mehta P. Aspirin in the prophylaxis of coronary artery disease. Curr Opin Cardiol 2002; 17: 552-558.
  • 17 Khan Q, Mehta JL. Relevance of platelet-independent effects of aspirin to its salutary effect in atherosclerosis-related events. J Atheroscler Thromb 2005; 12: 185-190.
  • 18 Jialal I, Devaraj S. Antioxidants and atherosclerosis: don’t throw out the baby with the bath water. Circulation 2003; 107: 926-928.
  • 19 Matsumoto T, Miyamori K, Kobayashi T. et al Apocynin normalizes hyperreactivity to phenylephrine in mesenteric arteries from cholesterol-fed mice by improving endothelium-derived hyperpolarizing factor response. Free Radic Biol Med 2006; 41: 1289-1303.
  • 20 Rey FE, Cifuentes ME, Kiarash A. et al Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res 2001; 89: 408-414.
  • 21 Stielow C, Catar RA, Muller G. et al Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 2006; 344: 200-205.
  • 22 Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 181-189.
  • 23 Morawietz H, Breier G. Endothelial cell biology: An update. 5(th) International Symposium on the Biology of Endothelial Cells. Thromb Haemost 2006; 95: 1025-1030.