Thrombosis and Haemostasis, Table of Contents Thromb Haemost 2007; 98(01): 109-115DOI: 10.1160/TH07-04-0310 Anniversary Issue Contribution Schattauer GmbH Heparan sulfate-protein interactions – A concept for drug design? Ulf Lindahl 1 Department of MedicalBiochemistryand Microbiology, Uppsala University,Uppsala, Sweden › Author Affiliations Recommend Article Abstract Full Text PDF Download Keywords KeywordsSulfation - oligosaccharide - glycomimetic References References 1 Bourin M-C, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J 1993; 289: 313-330. 2 Bernfield M, Götte M, Park PW. et al. Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 1999; 68: 729-777. 3 Bishop J, Schuksz M, Esko J. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007 in press. 4 Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest 2001; 108: 169-173. 5 Esko JE, Selleck SB. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Ann Rev Biochem 2002; 71: 435-471. 6 Maccarana M, Sakura Y, Tawada A. et al. Domain structure of heparan sulfates from bovine organs. J Biol Chem 1996; 271: 17804-17810. 7 Gallagher JT. Heparan sulfate: growth control with are stricted sequence menu. J Clin Invest 2001; 108: 357-361. 8 Ledin J, Staatz W, Li JP. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 2004; 279: 42732-42741. 9 van Kuppevelt TH, Dennissen MA, van Venrooij WJ. et al. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 1998; 273: 12960-12966. 10 Van den Born J, Gunnarsson K, Bakker MAH. et al. Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J Biol Chem 1995; 270: 31303-31309. 11 Ai X, Do AT, Lozynska O. et al. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 2003; 162: 341-351. 12 Vlodavsky I, Goldshmidt O, Zcharia E. et al. Mammalian heparanase: involvment in cancer metastasis, angiogenesis and normal development. Sem Cancer Biol 2002; 12: 121-129. 13 Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001; 108: 349-355. 14 Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2001; 57: 159-206. 15 Rosenberg RD, Shworak NW, Liu J. et al. Heparan sulfate proteoglycans of the cardiovascularsystem. Specific structures emerge but how is synthesis regulated?. J Clin Invest 1997; 100 (Suppl. 11) S67-75. 16 Shaklee PN, Glaser JH, Conrad HE. A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J Biol Chem 1985; 260: 9146-9149. 17 Fedarko NS, Conrad HE. Aunique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol 1986; 102: 587-599. 18 Lindahl B, Eriksson L, Lindahl U. Structure of heparan sulphate from human brain, with special regard to Alzheimer’s disease. Biochem J 1995; 306: 177-184. 19 Norgard-Sumnicht K, Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem 1995; 270: 12012-12024. 20 Westling C, Lindahl U. Location of N-unsubstituted glucosamine residues in heparan sulfate. The J Biol Chem 2002; 277: 49247-49255. 21 Shukla D, Liu J, Blaiklock P. et al. A Novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13-22. 22 Salmivirta M, Lidholt K, Lindahl U. Heparan sulfate -a piece of information. FASEB J 1996; 10: 1270-1279. 23 Ashikari-Hada S, Habuchi H, Kariya Y. et al. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 2004; 279: 12346-12354. 24 Powell AK, Yates EA, Fernig DG. et al. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 2004; 14: 17R-30R. 25 Jemth P, Kreuger J, Kusche-Gullberg M. et al. Bio-synthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs. Exploring the structural diversity by screening for fibroblast growth factor (FGF)1 and FGF2 binding. J Biol Chem 2002; 277: 30567-30573. 26 Kreuger J, Jemth P, Sanders-Lindberg E. et al. Fibroblast growth factors share binding sites in heparan sulphate. Biochem J 2005; 389: 145-150. 27 Jastrebova N, Vanwildemeersch M, Rapraeger AC. et al. Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 2006; 281: 26884-26892. 28 Lin X, Wei G, Shi Z. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 2000; 224: 299-311. 29 Kusche-Gullberg M, Kjellen L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 2003; 13: 605-611. 30 Li JP, Gong F, Hagner-McWhirter A. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 2003; 278: 28363-28366. 31 Inatani M, Irie F, Plump A. et al. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 2003; 302: 1044-1046. 32 Abramsson A, Kurup S, Busse M. et al. Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Devel 2007; 21: 316-331. 33 Ringvall M, Ledin J, Holmborn K. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 2000; 275: 25926-25930. 34 Merry CL, Bullock SL, Swan DC. et al. The molecular phenotype of heparan sulfate in the Hs2st-/- mutant mouse. J Biol Chem 2001; 276: 35429-35434. 35 Kamimura K, Koyama T, Habuchi H. et al. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 2006; 174: 773-778. 36 Kreuger J, Spillmann D, Li JP. et al. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 2006; 174: 323-327. 37 Stickens D, Zak BM, Rougier N. et al. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development (Cambridge) 2005; 132: 5055-5068. 38 Westphal V, Murch S, Kim S. et al. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am J Pathol 2000; 157: 1917-1925. 39 Raats CJ, Van Den Born J, Berden JH. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 2000; 57: 385-400. 40 Wang L, Fuster M, Sriramarao P. et al. Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. Nature Immunol 2005; 6: 902-910. 41 Parish CR. The role of heparan sulphate in inflammation. Nature Rev 2006; 6: 633-643. 42 Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5: 526-542. 43 Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 2001; 108: 341-347. 44 van Horssen J, Wesseling P, van den Heuvel LP. et al. Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid-related disorders. Lancet Neurol 2003; 2: 482-492. 45 Li JP, Galvis ML, Gong F. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders miceresistant to amyloid protein A amyloidosis. Proc Natl Acad Sci USA 2005; 102: 6473-6477. 46 Wang L, Brown JR, Varki A. et al. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002; 110: 127-136. 47 Kuberan B, Lech MZ, Beeler DL. et al. Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nature Biotechnol 2003; 21: 1343-1346. 48 Petitou M, Herault JP, Bernat A. et al. Synthesis of thrombin-inhibiting heparin mimeticswithout side effects. Nature 1999; 398: 417-422. 49 Orgueira HA, Bartolozzi A, Schell P. et al. Modular synthesis of heparin oligosaccharides. Chemistry 2003; 9: 140-169. 50 Khachigian LM, Parish CR. Phosphomannopentaosesulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiov Drug Rev 2004; 22: 1-6. 51 Naggi A, Casu B, Perez M. et al. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 2005; 280: 12103-12113. 52 Zhao H, Liu H, Chen Y. et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 2006; 66: 8779-8787. 53 Spillmann D, Witt D, Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 1998; 273: 15487-15493. 54 Kreuger J, Matsumoto T, Vanwildemeersch M. et al. Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO J 2002; 21: 6303-6311. 55 Robinson CJ, Mulloy B, Gallagher JT. et al. VEGF165-binding sites within heparan sulfate en-compass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem 2006; 281: 1731-1740. 56 Vogt AM, Pettersson F, Moll K. et al. Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathogens 2006; 2: e100. 57 Kisilevsky R, Lemieux LJ, Fraser PE. et al. Arrest-ing amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med 1995; 1: 143-148. 58 Larsson H, Akerud P, Nordling K. et al. A Novel anti-angiogenicform of antithrombin with retained protein Ase binding ability and heparin affinity. J Biol Chem 2001; 276: 11996-2002. 59 Vanwildemeersch M, Olsson AK, Gottfridsson E. et al. The anti-angiogenic His/Pro-rich fragment of histidine-rich glycoprotein binds to endothelial cell heparan sulfate in a Zn2+-dependent manner. J Biol Chem 2006; 281: 10298-10304. 60 Giulian D, Haverkamp LJ, Yu J. et al. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J Biol Chem 1998; 273: 29719-29726. 61 Belting M, Borsig L, Fuster MM. et al. Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA 2002; 99: 371-376. 62 Kisilevsky R, Szarek WA, Ancsin J. et al. Novel glycosaminoglycan precursors as anti-amyloid agents, part III. J Mol Neurosci 2003; 20: 291-297.