Thromb Haemost 2013; 109(05): 973-975
DOI: 10.1160/TH12-12-0916
Letters to the Editor
Schattauer GmbH

Soluble guanylyl cyclase is the only enzyme responsible for cyclic guanosine monophosphate synthesis in human platelets

Stepan Gambaryan
1   Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
2   Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
,
Hariharan Subramanian
1   Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
,
Natalia Rukoyatkina
1   Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
2   Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
,
Sabine Herterich
1   Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
,
Ulrich Walter
3   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

Received: 12 December 2012

Accepted after major revision: 17 February 2013

Publication Date:
01 December 2017 (online)

 

 
  • References

  • 1 Derbyshire ER, Marletta MA. Biochemistry of soluble guanylate cyclase. Handbook Exp Pharmacol 2009; 191: 17-31.
  • 2 Walter U, Gambaryan S. cGMP and cGMP-de-pendent protein kinase in platelets and blood cells. Handbook Exp Pharmacol 2009; 191: 533-548.
  • 3 Smolenski A. Novel roles of cAMP/cGMP-de-pendent signaling in platelets. J Thromb Haemost 2012; 10: 167-176.
  • 4 Kuhn M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 2003; 93: 700-709.
  • 5 Morita R, Ukyo N, Furuya M. et al. Atrial natriuretic peptide polarizes human dendritic cells toward a Th2-promoting phenotype through its receptor guanylyl cyclase-coupled receptor A. J Immunol 2003; 170: 5869-5875.
  • 6 Bender AT, Ostenson CL, Giordano D. et al. Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodies-terase expression. Cell Signal 2004; 16: 365-374.
  • 7 Schiffrin EL, St-Louis J, Essiambre R. Platelet binding sites and plasma concentration of atrialnatriuretic peptide in patients with essential hypertension. J Hypertens 1988; 06: 565-572.
  • 8 Strom TM, Weil J, Bidlingmaier F. Platelet receptors for atrial natriuretic peptide in man. Life Sci 1987; 40: 769-773.
  • 9 Schiffrin EL. Decreased density of binding sites for atrial natriuretic peptide on platelets of patients with severe congestive heart failure. Clin Sci 1988; 74: 213-218.
  • 10 Schiffrin EL, Carrier F, Thibault G. et al. Solubiliz-ation and molecular characterization of the atrial natriuretic peptide (ANP) receptor in human platelets: comparison with ANP receptors in rat tissues. J Clin Endocrinol Metab 1991; 72: 484-491.
  • 11 Loeb AL, Gear AR. Potentiation of platelet aggregation by atrial natriuretic peptide. Life Sci 1988; 43: 731-738.
  • 12 De Caterina R, Volpe M, Atlas SA. et al. Effects of atrial natriuretic factor on human platelet function. Life Sci 1985; 37: 1395-1402.
  • 13 Ulker S, Akgur S, Evinc A. et al. Platelet aggregation and atrial natriuretic peptide. Gen Pharmacol 1995; 26: 1409-1412.
  • 14 Canaan-Kuhl S, Parra-Roide L, Bialek JW. et al. Regulation of platelet clearance receptors for atrial natriuretic peptide in diabetic nephropathy. J Am Soc Nephrol 1992; 03: 236-243.
  • 15 Giannessi D, Andreassi MG, Del Ry S. et al. Possibility of age regulation of the natriuretic peptide C-receptor in human platelets. J Endocrinol Invest 2001; 24: 8-16.
  • 16 Scotland RS, Cohen M, Foster P. et al. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc Natl Acad Sci USA 2005; 102: 14452-14457.
  • 17 Haslam RJ, Dickinson NT, Jang EK. Cyclic nucleo-tides and phosphodiesterases in platelets. Thromb Haemost 1999; 82: 412-423.
  • 18 Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacol 2001; 62: 1153-1161.
  • 19 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120: e73-82.
  • 20 Rowley JW, Oler AJ, Tolley ND. et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011; 118: e101-111.
  • 21 Mindukshev I, Gambaryan S, Kehrer L. et al. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors. Clin Chem Lab Med 2012; 50: 1253-1262.