Thromb Haemost 2013; 110(05): 868-875
DOI: 10.1160/TH13-02-0084
Theme Issue Article
Schattauer GmbH

Novel antiplatelet drugs in clinical development

Martin Ungerer
1   AdvanceCor GmbH (previously, Procorde GmbH), Martinsried, Germany
,
Götz Münch
1   AdvanceCor GmbH (previously, Procorde GmbH), Martinsried, Germany
› Author Affiliations
Further Information

Publication History

Received: 01 February 2013

Accepted after major revision: 04 September 2013

Publication Date:
01 December 2017 (online)

Summary

The clinical value of antiplatelet compounds strongly depends on the benefit-risk balance between their anti-thrombotic effects and the bleeding risk they incur. This ratio is especially important in the treatment of cerebro-vascular disease. Several novel compounds in clinical development hold promise to improve this benefit-risk ratio.

 
  • References

  • 1 Mackay J, Mensah G. The Atlas of heart disease and stroke. 1 ed. World Health Organisation; 2004
  • 2 Yousuf O, Bhatt DL. The evolution of antiplatelet therapy in cardiovascular disease. Nature Rev Cardiol 2011; 8: 547-559.
  • 3 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Disc 2010; 9: 154-169.
  • 4 Katsnelson M, Sacco RL, Moscucci M. Progress for stroke prevention with atrial fibrillation. Emergence of novel oral anticoagulants. Circulation 2012; 125: 1577-1583.
  • 5 Ferreiro JL, Ueno M, Angiolillo DJ. Cangrelor: a review on its mechanism of action and clinical development. Expert Rev Cardiovasc Ther 2009; 7: 1195-1201.
  • 6 Bhatt DL, Lincoff AM, Gibson CM. et al CHAMPION PLATFORM Investigators. Intravenous platelet blockade with cangrelor during PCI. N Engl J Med 2009; 361: 2330-2341.
  • 7 Harrington RA, Stone GW, McNulty S. et al. Platelet inhibition with cangrelor in patients undergoing PCI. N Engl J Med 2009; 361: 2318-2329.
  • 8 Angiolillo DJ, Firstenberg MS, Price MJ. et al. BRIDGE Investigators. Bridging antiplatelet therapy with cangrelor in patients undergoing cardiac surgery: a randomized controlled trial. J Am Med Assoc 2012; 307: 265-274.
  • 9 Leonardi S, Rao SV, Harrington RA. et al. Rationale and design of the randomized, double-blind trial testing INtraveNous and Oral administration of elinogrel, a selective and reversible P2Y(12)-receptor inhibitor, versus clopidogrel to eVAluate Tolerability and Efficacy in nonurgent Percutaneous Coronary Interventions patients (INNOVATE-PCI). Am Heart J 2010; 160: 65-72.
  • 10 Gurbel PA, Bliden KP, Antonino MJ. et al. The effect of elinogrel on high platelet reactivity during dual antiplatelet therapy and the relation to CYP2C19*2 genotype: first experience in patients. J Thromb Haemost 2010; 8:: 43-53.
  • 11 Welsh RC, Rao SV, Zeymer U. et al. INNOVATE-PCI Investigators. A randomized double-blind active-controlled phase II trial to evaluate a novel selective and reversible intravenous and oral P2Y12 inhibitor elinogrel versus clopidogrel in patients undergoing nonurgent percutaneous coronary intervention: the INNOVATE-PCI trial. Circ Cardiovasc Intervention 2012; 5:: 336-346.
  • 12 van Giezen JJJ, Humphries RG. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 2005; 31: 195-204.
  • 13 Meadows TA, Bhatt DL. Clinical aspects of platelet inhibitors and thrombus formation. Circ Res 2007; 100: 1261-1275.
  • 14 Shah R. Protease-activated receptors in cardiovascular health and disease. Am Heart J 2009; 157: 253-262.
  • 15 Chintala M, Strony J, Yang B. et al. SCH 602539, a protease-activated receptor-1 antagonist, inhibits thrombosis alone and in combination with cangrelor in a Folts model of arterial thrombosis in cynomolgus monkeys. Arterioscler Thromb Vasc Biol 2010; 30: 2143-2149.
  • 16 Chackalamannil S, Wang Y, Greenlee WJ. et al. Discovery of a novel orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J Med Chem 2008; 51: 3061-3064.
  • 17 Zhang C, Srinivasan Y, Arlow DH. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 2012; 492: 387-392.
  • 18 Becker RC, Moliterno DJ, Jennings LK. et al. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomized, double-blind, placebo-controlled study. Lancet 2009; 373: 919-928.
  • 19 Tricoci P, Huang Z, Held C. et al. for the TRACER investigators. Thrombin-receptor antagonist voraxapar in acute coronary syndromes. N Engl J Med 2012; 12 (366) 20-33.
  • 20 Morrow DA, Braunwald E, Bonaca MP. et al. for the TRA2P-TIMI 50 steering committee and investigators. Voraxapar in the secondary prevention of atherothrombotic events. N Engl J Med 2012; 366: 1404-1413.
  • 21 Scirica BM, Bonaca MP, Braunwald E. et al. for the TRA2P-TIMI 50 steering committee investigators. Voraxapar for secondary prevention of thrombotic events for patients with previous myocardial infarction: a prespecified subgroup analysis of the TRA2P-TIMI 50 trial. Lancet 2012; 380: 1317-1324.
  • 22 Kogushi M, Yokohama H, Kitamura S. et al. Effects of E5555, on inflammatory markers in vivo. J Thromb Haemost 2007; 5 Abstract P-M-059
  • 23 Van de Werf F. Inhibitors of the platelet thrombin receptor. Will they live up to their promises? Circulation 2011; 123: 1833-1835.
  • 24 O’Donoghue M, Bhatt DL, Wiviott SD. et al. Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes. The lessons from antagonising the cellular effects of thrombin-acute coronary syndromes trial. Circulation 2011; 123: 1843-1853.
  • 25 Wiviott SD, Flather MD, O’Donoghue ML. et al. Randomized trial of atopaxar in the treatment of patients with coronary artery disease. The lessons from antagonising the cellular effect of thrombin-coronary artery disease trial. Circulation 2011; 123: 1854-1863.
  • 26 Lee M, Saver JL, Hong KS. et al. Risk of intracranial hemorrhage with protease-activated receptor-1 antagonists. Stroke 2012; 43: 3189-3195.
  • 27 Chintala M, Vemapalli S, Kurowski S. et al.. SCH530348, a novel antiplatelet agent, demonstrated no bleeding risk alone or in combination with aspirin or clopidogrel in cynomolgus monkeys. Arterioscler Thromb Vasc Biol 2008; 28: e138-139.
  • 28 Kogushi M, Matsuoka T, Kawata T. et al.. The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) inhibits arterial thrombosis without affecting bleeding time in guinea pigs. Eur J Pharmacol 2011; 657: 131-137.
  • 29 Lee H, Sturgeon SA, Mountford JK. et al.. Safety and efficacy of targeting platelet proteinase-activated receptors in combination with existing anti-platelet drugs as anti-thrombotics in mice. Br J Pharmacol 2012; 166: 2188-2197.
  • 30 Abciximab Emergent Stroke Treatment Trial (AbESTT) Investigators. Emergency Administration of Abciximab for Treatment of Patients With Acute Ischaemic Stroke Stroke 2005; 36: 880-890.
  • 31 Adams HP, Effron MB, Torner J. et al. Emergency Administration of Abciximab for Treatment of Patients With Acute Ischaemic Stroke: Results of an International Phase III Trial. Stroke 2008; 39: 87-99.
  • 32 Schwarz M, Meade G, Stoll P. Conformation-specific blockade of the integrin GPIIb/IIIa. Circ Res 2006; 99: 25-33.
  • 33 Boersma E, Harrington RA, Moliterno DJ. et al. Platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: A meta analysis of all major randomized clinical trials. Lancet 2002; 259: 189-198.
  • 34 Varga-Szabo D, Pleines I, Nieswandt B. Cell Adhesion Mechanisms in Platelets. Arterioscler Thromb Vasc Biol 2008; 28: 403-412.
  • 35 Stoll G, Kleinschnitz C, Nieswandt B. The role of glycoprotein Ibalpha and von Willebrand factor interaction in stroke development. Hamostaseologie 2010; 30: 136-138.
  • 36 De Meyer SF, Stoll G, Wagner DD, Kleinschnitz C. von Willebrand factor- an emerging target in stroke therapy. Stroke 2012; 43: 599-606.
  • 37 Kraft P, De Meyer SF, Kleinschnitz C. Next-generation antithrombotics in ischaemic stroke: preclinical perspective on ‘bleeding-free antithrombosis’. J Cereb Blood Flow Metab 2012; 32: 1831-1840.
  • 38 Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res 2007; 120 (Suppl. 01) S5-S9.
  • 39 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood 2003; 102: 449-461.
  • 40 Massberg S, Gawaz M, Grüner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-49.
  • 41 Kleinschnitz C, Pozgajova M, Pham M. et al. Targeting Platelets in Acute Experimental Stroke: Impact of Glycoprotein Ib, VI, and IIb/IIIa Blockade on Infarct Size, Functional Outcome, and Intracranial Bleeding. Circulation 2007; 115: 2323-2330.
  • 42 Kleinschnitz C, De Meyer SF, Schwarz T. et al. Deficiency of von Willebrand factor protects mice from ischaemic stroke. Blood 2009; 113: 3600-3603.
  • 43 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673-687.
  • 44 Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2004; 114: 447-453.
  • 45 Machin SJ, Clarke C, Ikemura O. et al. A humanized monoclonal antibody against vWF A1 domain inhibits vWF:RiCof activity and platelet adhesion in human volunteers. J Thromb Haemost. 2003 1. Abstract OC328
  • 46 Gilbert JC, DeFeo-Fraulini T, Hutabarat RM. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 2007; 116: 2678-2686.
  • 47 Markus HS, McCollum C, Imray C. et al. The von Willebrand Inhibitor ARC1779 Reduces Cerebral Embolisation After Carotid Endarterectomy: A Randomized Trial. Stroke 2011; 42: 2149-2153.
  • 48 Ulrichts H, Silence K, Schoolmeester A. et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared to currently marketed antiplatelet drugs. Blood 2011; 118: 757-765.
  • 49 Abd-Elaziz K, Kamphuisen PW, Lyssens C. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of anti-vWF nanobody ALX-0681 after single and multiple subcutaneous administrations to healthy volunteers. Blood 2009; 114 Abstract 1063
  • 50 van Loon JE, de Jaegere PP, Ulrichts H. et al. The in vitro effect of the new antithrombotic drug candidate ALX-0081 on blood samples of patients undergoing percutaneous coronary intervention. Thromb Haemost 2011; 106: 165-171.
  • 51 Nieswandt B, Schulte V, Bergmeier W. et al. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 2001; 193: 459-469.
  • 52 Schulte V, Reusch HP, Pozgajova M. et al. Two-phase antithrombotic protection after anti-glycoprotein VI treatment in mice. Arterioscler Thromb Vasc Biol 2006; 26: 1640-1647.
  • 53 Grüner S, Prostredna M, Koch M. et al. Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood 2005; 105: 1492-1499.
  • 54 Mangin PH, Tang CJ, Bourdon C. et al. A humanized glycoprotein VI (GPVI) mouse model to asses the antithrombotic efficacies of anti-GPVI agents. J Pharm Exp Ther 2012; 341: 156-163.
  • 55 Massberg S, Konrad I, Bültmann A. et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004; 18: 397-399.
  • 56 Bültmann A, Li Z, Wagner S. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis- a possible role of fibronectin. J Mol Cell Cardiol 2010; 49: 532-542.
  • 57 Schönberger T, Siegel-Axel D, Bussl R. et al. The immunoadhesin glycoprotein VI-Fc regulates arterial remodeling after mechanical injury in ApoE-/- mice. Cardiovasc Res 2008; 80: 131-137.
  • 58 Göbel S, Li ZM, Vogelmann J. et al. The GPVI-Fc fusion protein Revacept improves cerebral infarct volume and functional outcome in stroke. PLOS ONE 2013; 8: e66960
  • 59 Schulz C, Penz C, Hoffmann C. et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol 2008; 103: 356-367.
  • 60 Ungerer M, Li Z, Baumgartner C. et al. The GPVI – Fc fusion protein Revacept reduces thrombus formation and improves vascular dysfunction in atherosclerosis without any impact on bleeding times. PLOS ONE 2013; 8: e71193
  • 61 Grüner S, Prostredna M, Aktas B. et al. Anti-glycoprotein VI treatment severely compromises hemostasis in mice with reduced alpha2beta1 levels or concomitant aspirin therapy. Circulation 2004; 110: 2964-2975.
  • 62 Ungerer M, Rosport K, Bültmann A. et al. Novel Antiplatelet Drug Revacept (Dimeric Glycoprotein VI-Fc) Specifically and Efficiently Inhibited Collagen-Induced Platelet Aggre-gation Without Affecting General Hemostasis in Humans. Circulation 2011; 123: 1891-1899.
  • 63 Philips JW, Barringhaus KG, Sanders JM. et al. Single injection of P-selectin or P-selectin glycoprotein ligand-1 monoclonal antibody blocks neointima formation after arterial injury in Apo E deficient mice. Circulation 2003; 107: 2244-2249.
  • 64 Tardif JC, Tanguay JF, Wright SS. et al. Effects of the p selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction. The SELECT-ACS trial. J Am Coll Cardiol 2013; 61: 2048-2055.
  • 65 Fitzgerald DJ, Fitz Gerald GA. Historical lessons in translational medicine: Cyclooxygenase inhibition and P2Y12 antagonism. Circ Res 2013; 112: 174-194.
  • 66 Maalej N, Osman HE, Shanmuganayagam D. et al. Antithrombotic Properties of the Thromboxane A2/Prostaglandin H2 Receptor Antagonist S18886 on Prevention of Platelet-Dependent Cyclic Flow Reductions in Dogs. J Cardiovasc Pharmacol 2005; 45: 389-395.
  • 67 Bousser MG, Amarenco P, Chamorro A. et al. on behalf of the PERFORM Study Investigators. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet 2011; 377: 2013-2022.
  • 68 Richardson A, Sakariassen KS, Meyer JP. et al. Single ascending oral dose pharmacokinetics and pharmacodynamics study of EV-077: the specific inhibitor of prostanoid- and isoprostane-induced cellular activation. Eur J Clin Pharmacol 2013; 69: 459-465.
  • 69 Przyklenk K, Frelinger AL, III Linden MD. et al. Targeted inhibition of the serotonin 5HT2A receptor improves coronary patency in an in vivo model of recurrent thrombosis. J Thromb Haemost 2012; 8: 331-340.
  • 70 Bampalis VG, Brantl SA, Siess W. Why and how to eliminate spontaneous platelet aggregation in blood measured by multiple electrode aggregometry. J Thromb Haemost 2012; 10: 1710-1714.
  • 71 Shinohara Y, Katayama Y, Uchiyama S. et al. Cilostazol for prevention of secondary stroke (CSPS"): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurology 2010; 9: 959-968.
  • 72 Campbell CL, Smyth S, Montalescot G. et al. Aspirin dose for the prevention of cardiovascular disease: a systematic review. J Am Med Assoc 2007; 297: 2018-2024.
  • 73 Diener HC, Bogousslavsky J, Blass LM. et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet 2004; 364: 331-337.
  • 74 The SP3 investigators. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med 2012; 367: 817-825.