Thromb Haemost 2016; 116(06): 1070-1078
DOI: 10.1160/TH16-06-0438
Cellular Haemostasis and Platelets
Schattauer Publishers Schattauer

A novel platelet-type von Willebrand disease mutation (GP1BA p.Met255Ile) associated with type 2B “Malmö/New York” von Willebrand disease

Cécile Lavenu-Bombled
1   Service d’Hématologie Biologique, CHU Bicêtre, AP-HP, Université Paris Sud, Le Kremlin Bicêtre, France
8   INSERM UMR_S1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
10   Centre de Référence de la Maladie de Willebrand, France
11   Centre de Référence des Pathologies Plaquettaires, France
,
Corinne Guitton
2   Service de Rhumato-Hématologie Pédiatrique, CHU Bicêtre, AP-HP, Université Paris Sud, Le Kremlin Bicêtre, France
10   Centre de Référence de la Maladie de Willebrand, France
,
Arnaud Dupuis
3   UMR_S949 INSERM, Strasbourg, France
4   Etablissement Français du Sang (EFS)-ALCA, Strasbourg, France
5   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
6   Université de Strasbourg, Strasbourg, France
11   Centre de Référence des Pathologies Plaquettaires, France
,
Marie-Jeanne Baas
3   UMR_S949 INSERM, Strasbourg, France
4   Etablissement Français du Sang (EFS)-ALCA, Strasbourg, France
5   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
6   Université de Strasbourg, Strasbourg, France
,
Céline Desconclois
1   Service d’Hématologie Biologique, CHU Bicêtre, AP-HP, Université Paris Sud, Le Kremlin Bicêtre, France
10   Centre de Référence de la Maladie de Willebrand, France
11   Centre de Référence des Pathologies Plaquettaires, France
,
Marie Dreyfus
1   Service d’Hématologie Biologique, CHU Bicêtre, AP-HP, Université Paris Sud, Le Kremlin Bicêtre, France
10   Centre de Référence de la Maladie de Willebrand, France
11   Centre de Référence des Pathologies Plaquettaires, France
,
Renhao Li
7   Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
,
Claudine Caron
9   Département d’Hématologie Transfusion, CHU Lille, France
10   Centre de Référence de la Maladie de Willebrand, France
,
Christian Gachet
3   UMR_S949 INSERM, Strasbourg, France
4   Etablissement Français du Sang (EFS)-ALCA, Strasbourg, France
5   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
6   Université de Strasbourg, Strasbourg, France
11   Centre de Référence des Pathologies Plaquettaires, France
,
Edith Fressinaud
8   INSERM UMR_S1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
9   Département d’Hématologie Transfusion, CHU Lille, France
10   Centre de Référence de la Maladie de Willebrand, France
,
François Lanza
3   UMR_S949 INSERM, Strasbourg, France
4   Etablissement Français du Sang (EFS)-ALCA, Strasbourg, France
5   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
6   Université de Strasbourg, Strasbourg, France
11   Centre de Référence des Pathologies Plaquettaires, France
› Author Affiliations
Further Information

Publication History

Received 08 June 2016

Accepted after major revision: 07 August 2016

Publication Date:
09 March 2018 (online)

Summary

Interaction between von Willebrand factor (VWF) and platelet GPIbα is required for primary haemostasis. Lack or loss-of-function in the ligand-receptor pair results in bleeding complications. Paradoxically, gain-of-function mutations in VWF or GPIbα also result in bleeding complications as observed in type 2B von Willebrand disease (VWD) and platelet-type- (PT-) VWD, respectively. A similar phenotype is observed with increased ristocetin-induced platelet agglutination and disappearance of the highest molecular weight multimers of VWF. We evaluated a patient with a bleeding disorder and a biological presentation compatible with type 2B VWD. VWF and platelet functional assays, sequencing of the VWF and GP1BA genes, and expression studies in HEK cells were performed. Sequencing of the VWF gene in the propositus revealed a heterozygous p.Pro1266Leu mutation previously found in type 2B VWD Malmö/New York. These variants are characterised by a mild phenotype and a normal VWF multimer composition suggesting the presence of a second mutation in our propositus. Sequencing of the GP1BA gene revealed a heterozygous c.765G>A substitution changing Met at position 255 of GPIbα to Ile. This new mutation is located in the β-switch domain where five other gain-of-function mutations have been reported in PT-VWD. Expression of GPIbα Ile255 in HEK GPIb-IX cells resulted in enhanced VWF binding compared to wild-type, similar to known PT-VWD mutations (p.Val249, p.Ser249 and p.Val255) indicating that it contributes to the propositus defects. This first report associating PT-with type 2B VWD illustrates the importance of combining biological assays with genetic testing to better understand the clinical phenotype.

 
  • References

  • 1 Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012; 18 (Suppl. 04) 154-160.
  • 2 Sadler JE, Budde U, Eikenboom JC. et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 04: 2103-2114.
  • 3 Savoia A, Kunishima S, De Rocco D. et al. Spectrum of the mutations in Bern-ard-Soulier syndrome. Hum Mutat 2014; 35: 1033-1045.
  • 4 Othman M. Platelet-type von Willebrand disease: a rare, often misdiagnosed and underdiagnosed bleeding disorder. Semin Thromb Haemost 2011; 37: 464-469.
  • 5 Othman M, Favaloro EJ. Genetics of type 2B von Willebrand disease: “true 2B,” “tricky 2B,” or “not 2B.” What are the modifiers of the phenotype?. Semin Thromb Haemost 2008; 34: 520-531.
  • 6 Hamilton A, Ozelo M, Leggo J. et al. Frequency of platelet type versus type 2B von Willebrand disease. An international registry-based study. Thromb Hae-most 2011; 105: 501-508.
  • 7 Eikenboom JC, Reitsma PH, Peerlinck KM. et al. Recessive inheritance of von Willebrand’s disease type I. Lancet 1993; 341: 982-986.
  • 8 Holmberg L, Dent JA, Schneppenheim R. et al. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure. J Clin Invest 1993; 91: 2169-2177.
  • 9 Weiss HJ, Sussman II. A new von Willebrand variant (type I, New York): increased ristocetin-induced platelet aggregation and plasma von Willebrand factor containing the full range of multimers. Blood 1986; 68: 149-156.
  • 10 Othman M, Notley C, Lavender FL. et al. Identification and functional characterisation of a novel 27-bp deletion in the macroglycopeptide-coding region of the GPIBA gene resulting in platelet-type von Willebrand disease. Blood 2005; 105: 4330-4336.
  • 11 Blenner MA, Dong X, Springer TA. Structural basis of regulation of von Wille-brand factor binding to glycoprotein Ib. J Biol Chem 2014; 289: 5565-5579.
  • 12 Enayat S, Ravanbod S, Rassoulzadegan M. et al. A novel D235Y mutation in the GP1BA gene enhances platelet interaction with von Willebrand factor in an Iranian family with platelet-type von Willebrand disease. Thromb Haemost 2012; 108: 946-954.
  • 13 Matsubara Y, Murata M, Sugita K. et al. Identification of a novel point mutation in platelet glycoprotein Ibalpha, Gly to Ser at residue 233, in a Japanese family with platelet-type von Willebrand disease. J Thromb Haemost 2003; 01: 2198-2205.
  • 14 Moriki T, Murata M, Kitaguchi T. et al. Expression and functional characterisation of an abnormal platelet membrane glycoprotein Ib alpha (Met239 --> Val) reported in patients with platelet-type von Willebrand disease. Blood 1997; 90: 698-705.
  • 15 Nurden P, Lanza F, Bonnafous-Faurie C. et al. A second report of platelet-type von Willebrand disease with a Gly233Ser mutation in the GPIBA gene. Thromb Haemost 2007; 97: 319-321.
  • 16 Russell SD, Roth GJ. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood 1993; 81: 1787-1791.
  • 17 Takahashi H, Murata M, Moriki T. et al. Substitution of Val for Met at residue 239 of platelet glycoprotein Ib alpha in Japanese patients with platelet-type von Willebrand disease. Blood 1995; 85: 727-733.
  • 18 Miller JL, Cunningham D, Lyle VA. et al. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci USA 1991; 88: 4761-4765.
  • 19 Woods AI, Sanchez-Luceros A, Bermejo E. et al. Identification of p.W246L as a novel mutation in the GP1BA gene responsible for platelet-type von Willebrand disease. Semin Thromb Haemost 2014; 40: 151-160.
  • 20 Andrews RK, Booth WJ, Gorman JJ. et al. Purification of botrocetin from Bo-throps jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry 1989; 28: 8317-8326.
  • 21 Toti F, Gachet C, Ohlmann P. et al. Electrophoretic studies on molecular defects of von Willebrand factor and platelet glycoprotein IIb-IIIa with antibodies produced in egg yolk from laying hens. Haemostasis 1992; 22: 32-40.
  • 22 Caron C, Hilbert L, Vanhoorelbeke K. et al. Measurement of von Willebrand factor binding to a recombinant fragment of glycoprotein Ibalpha in an enzyme-linked immunosorbent assay-based method: performances in patients with type 2B von Willebrand disease. Br J Haematol 2006; 133: 655-663.
  • 23 Strassel C, David T, Eckly A. et al. Synthesis of GPIb beta with novel transmem-brane and cytoplasmic sequences in a Bernard-Soulier patient resulting in GPIb-defective signaling in CHO cells. J Thromb Haemost 2006; 04: 217-228.
  • 24 Huizinga EG, Tsuji S, Romijn RA. et al. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 2002; 297: 1176-1179.
  • 25 Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126-2132.
  • 26 Strassel C, Pasquet JM, Alessi MC. et al. A novel missense mutation shows that GPIbbeta has a dual role in controlling the processing and stability of the platelet GPIb-IX adhesion receptor. Biochemistry 2003; 42: 4452-4462.
  • 27 Othman M, Kaur H, Favaloro EJ. et al. Platelet Type von Willebrand Disease and Registry Report: communication from the SSC of the ISTH. J Thromb Hae-most 2016; 14: 411-414.
  • 28 Othman M, Kaur H, Emsley J. Platelet-type von Willebrand disease: new insights into the molecular pathophysiology of a unique platelet defect. Semin Thromb Haemost 2013; 39: 663-673.
  • 29 Othman M, Emsley J. Platelet-type von Willebrand disease: toward an improved understanding of the “sticky situation”. Semin Thromb Haemost 2014; 40: 146-150.
  • 30 Dong J, Schade AJ, Romo GM. et al. Novel gain-of-function mutations of platelet glycoprotein IBalpha by valine mutagenesis in the Cys209-Cys248 disulfide loop. Functional analysis under statis and dynamic conditions. J Biol Chem 2000; 275: 27663-27670.
  • 31 Balduini CL, Pecci A, Noris P. Diagnosis and management of inherited throm-bocytopenias. Semin Thromb Haemost 2013; 39: 161-171.
  • 32 Federici AB, Mannucci PM, Castaman G. et al. Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients. Blood 2009; 113: 526-534.
  • 33 Rayes J, Hollestelle MJ, Legendre P. et al. Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood 2010; 115: 4870-4877.
  • 34 Casari C, Du V, Wu YP. et al. Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B-associated thrombocytopenia. Blood 2013; 122: 2893-2902.
  • 35 Miura S, Li CQ, Cao Z, Wang H. et al. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ibalpha-(1-289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J Biol Chem 2000; 275: 7539-7546.