Nuklearmedizin 2007; 46(04): 149-154
DOI: 10.1160/nukmed-0065
Zertifizierte Fortbildung
Schattauer GmbH

18F-FDG metabolism in a rat model of chronic infarction

A 17-sector semiquantitative analysis 18F-FDG-Metabolismus im Rattenmodell für chronischen InfarktEine semiquantitative Analyse mit 17 Sektoren
I. Peñuelas
1   Department of Nuclear Medicine
2   Department of MicroPET Research Unit CIMA-CUN, Pamplona, Spain
,
G. Abizanda
3   Department of Hematology and Cell Therapy Service
4   Department of Foundation for Applied Medical Research, University of Navarra
,
M. J. García-Velloso
1   Department of Nuclear Medicine
,
J. J. Gavira
5   Department of Cardiology and Cardiovascular Surgery, Clínica Universitaria
,
J. M. Martí-Climent
1   Department of Nuclear Medicine
,
M. Ecay
2   Department of MicroPET Research Unit CIMA-CUN, Pamplona, Spain
,
M. Collantes
2   Department of MicroPET Research Unit CIMA-CUN, Pamplona, Spain
,
J. A. García de Jalôn
6   Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Spain
,
A. García-Rodríguez
6   Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Spain
,
M. Mazo
3   Department of Hematology and Cell Therapy Service
4   Department of Foundation for Applied Medical Research, University of Navarra
,
J. Barba
5   Department of Cardiology and Cardiovascular Surgery, Clínica Universitaria
,
J. A. Richter
1   Department of Nuclear Medicine
,
F. Prôsper
3   Department of Hematology and Cell Therapy Service
4   Department of Foundation for Applied Medical Research, University of Navarra
› Author Affiliations
Further Information

Publication History

Received: 03 November 2006

accepted in revised form: 07 March 2007

Publication Date:
28 December 2017 (online)

Summary

Strategies to establish the functional benefit of cell therapy in cardiac regeneration and the potential mechanism are needed. Aims: Development of a semi-quantitative method for non invasive assessment of cardiac viability and function in a rat model of myocardial infarction (MI) based on the use of microPET. Animals, methods: Ten rats were subjected to myocardial imaging 2, 7, 14, 30, 60 and 90 days after left coronary artery ligation. Intravenous 18F-fluoro- 2-deoxy-2-D-glucose (18F-FDG) was administered and regional 18F activity concentrations per unit area were measured in 17 regions of interest (ROIs) drawn on cardiac polar maps. By comparing the differences in 18F uptake between baseline and each of the follow up time points, parametric polar maps of statistical significance (PPMSS) were calculated. Left ventricular ejection fraction (LVEF) was blindly assessed echocardiographically. All animals were sacrificed for histopathological analysis after 90 days. Results: The diagnostic quality of 18F-FDG microPET images was excellent. PPMSS demonstrated a statistically significant decrease in 18F concentrations as early as 48 hours after MI in 4 of the 17 ROIs (segments 7, 13, 16 and 17; p <0.05) that persisted throughout the study. Semiquantitative analysis of 18F-FDG uptake correlated with echocardiographic decrease in LVEF (p <0.001). Conclusion: The use of PPMSS based on 18F-FDG-microPET provides valuable semi-quantitative information of heart glucose metabolism allowing for non-invasive follow up thus representing a useful strategy for assessment of novel therapies in cardiac regeneration.

Zusammenfassung

Strategien zur Ermittlung des funktionellen Nutzens einer Zelltherapie zur kardialen Regeneration und der potenziellen Mechanismen werden benötigt. Ziele: Entwicklung eines semiquantitativen Verfahrens zur nicht invasiven Bestimmung der kardialen Vitalität und Funktion in einem Rattenmodell für Myokardinfarkt (MI) basierend auf der Untersuchung mittels microPET. Tiere, Methodik: Bei zehn Ratten erfolgte 2, 7, 14, 30, 60 und 90 Tage nach einer Ligatur der Arteria coronaria sinistra eine myokardiale Bildgebung. 18F-Fluor-2-deoxy-2-D-glukose (18F-FDG) wurde intravenös verabreicht und die regionalen 18F-Aktivitätskonzentrationen pro Gebiet in 17 ROIs (regions of interest), die auf Polar-Maps definiert wurden, gemessen. Mittels eines Vergleichs der Differenzen der Aufnahme von 18F zwischen dem Ausgangswert und jedem der Zeitpunkte der Nachbeobachtung wurden parametrische Polar-Maps der statistischen Signifikanz (parametric polar maps of statistical significance, PPMSS) berechnet. Die linksventrikuläre Ejektionsfraktion (LVEF) wurde geblindet echokardiographisch untersucht. Alle Tiere wurden nach 90 Tagen zur histopathologischen Analyse getötet. Ergebnisse: Die diagnostische Qualität der 18F-FDG-microPET-Bilder war ausgezeichnet. In den PPMSS zeigte sich bereits 48 Stunden nach dem MI eine statistisch signifikante Verringerung der 18F-Konzentrationen in vier der 17 ROIs (Segmente 7, 13, 16 und 17; p <0,05), die während der gesamten Studie persistierte. Die semiquantitative Analyse der 18F-FDG-Aufnahme korrelierte mit der echokardiographischen Verringerung der LVEF (p <0,001). Schlussfolgerung: Die Verwendung von PPMSS auf Basis der 18F-FDG-microPET ergibt wertvolle semiquantitative Informationen des kardialen Glukosemetabolismus und ermöglicht die nicht invasive Nachbeobachtung. Sie ist nützlich zur Beurteilung der Wirksamkeit neuer Therapien zur kardialen Regeneration.

 
  • References

  • 1 Agbulut O, Mazo M, Bressolle C. et al. Can bone marrow-derivedmultipotent adult progenitor cells regenerate infarcted myocardium?. Cardiovasc Res 2006; 72: 175-183.
  • 2 Chen IY, Wu JC, Min JJ. et al. Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 2004; 109: 1415-1420.
  • 3 Croteau E, Benard F, Cadorette J. et al. Quantitative gated PET for the assessment of left ventricular function in small animals. J Nucl Med 2003; 44: 1655-1661.
  • 4 Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998; 39: 60-76.
  • 5 Hernandez-Pampaloni M, Allada V, Fishbein MC. et al. Myocardial perfusion and viability by positron emission tomography in infants and children with coronary abnormalities: correlation with echocardiography, coronary angiography, and his- topathology. J Am Coll Cardiol 2003; 41: 618-626.
  • 6 Inubushi M, Wu JC, Gambhir SS. et al. Positronemission tomography reporter gene expression imaging in rat myocardium. Circulation 2003; 107: 326-332.
  • 7 Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 1979; 11: 447-455.
  • 8 Kudo T, Fukuchi K, Annala AJ. et al. Noninvasive measurement of myocardial activity concentrations and perfusion defect sizes in rats with a new small-animal positron emission tomograph. Circulation 2002; 106: 118-123.
  • 9 Laforest R, Sharp TL, Engelbach JA. et al. Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 2005; 32: 679-685.
  • 10 Marti-Climent JM, Garcia Velloso MJ, Serra P. et al. Positron emission tomography with PET/CT. Rev Esp Med Nucl 2005; 24: 60-76.
  • 11 Schelbert HR, Beanlands R, Bengel F. et al. PET myocardial perfusion and glucose metabolism imaging: Part 2: Guidelines for interpretation and reporting. JNucl Cardiol 2003; 10: 557-571.
  • 12 Surti S, Karp JS, Perkins AE. et al. Imaging performance of A-PET: a small animal PET camera. IEEE Trans Med Imaging 2005; 24: 844-852.
  • 13 Verdouw PD, van den Doel MA, de Zeeuw S. et al. Animal models in the study of myocardial ischae- mia and ischaemic syndromes. Cardiovasc Res 1998; 39: 121-135.