Yearb Med Inform 2016; 25(01): 211-218
DOI: 10.15265/IY-2016-019
IMIA and Schattauer GmbH
Georg Thieme Verlag KG Stuttgart

Clinical Research Informatics for Big Data and Precision Medicine

C. Weng
1   Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
,
M.G. Kahn
2   Department of Pediatrics, University of Colorado, Denver, CO 80045 USA
› Institutsangaben
Weitere Informationen

Correspondence to:

Chunhua Weng, PhD, FACMI
Department of Biomedical Informatics
Columbia University
622 W 168 Street, PH-20
New York, NY 10032, USA

Publikationsverlauf

10. November 2016

Publikationsdatum:
06. März 2018 (online)

 

Summary

Objectives: To reflect on the notable events and significant developments in Clinical Research Informatics (CRI) in the year of 2015 and discuss near-term trends impacting CRI.

Methods: We selected key publications that highlight not only important recent advances in CRI but also notable events likely to have significant impact on CRI activities over the next few years or longer, and consulted the discussions in relevant scientific communities and an online living textbook for modern clinical trials. We also related the new concepts with old problems to improve the continuity of CRI research.

Results: The highlights in CRI in 2015 include the growing adoption of electronic health records (EHR), the rapid development of regional, national, and global clinical data research networks for using EHR data to integrate scalable clinical research with clinical care and generate robust medical evidence. Data quality, integration, and fusion, data access by researchers, study transparency, results reproducibility, and infrastructure sustainability are persistent challenges.

Conclusion: The advances in Big Data Analytics and Internet technologies together with the engagement of citizens in sciences are shaping the global clinical research enterprise, which is getting more open and increasingly stakeholder-centered, where stakeholders include patients, clinicians, researchers, and sponsors.


#

 


#
  • References

  • 1 Embi PJ, Payne PR. Clinical research informatics: challenges, opportunities and definition for an emerging domain.. J Am Med Inform Assoc 2009; 16 (Suppl. 03) 316-27.
  • 2 Zerhouni EA. Translational and clinical science--time for a new vision.. N Engl J Med 2005; 353 (Suppl. 15) p. 1621-3.
  • 3 Bandodkar AJ, Jia W, Yardimci C, Wang CX, Ramirez J, Wang J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study.. Anal Chem 2015; 87 (Suppl. 01) 394-8.
  • 4 IOM, in Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease.. Washington (DC): IOM; 2011
  • 5 Kohane IS. Health Care Policy. Ten things we have to do to achieve precision medicine.. Science 2015; 349 6243 37-8.
  • 6 Kahn MG, Weng C. Clinical research informatics: a conceptual perspective.. J Am Med Inform Assoc 2012; 19 (Suppl. 01) e36-42.
  • 7 Ma H, Weng C. Identification of Questionable Exclusion Criteria in Mental Disorder Clinical Trials Using a Medical Encyclopedia.. Pac Symp Biocomput 2016; 21: 219-30.
  • 8 He Z, Wang S, Borhanian E, Weng C. Assessing the Collective Population Representativeness of Related Type 2 Diabetes Trials by Combining Public Data from ClinicalTrials.gov and NHANES.. Stud Health Technol Inform 2015; 216: 569-73.
  • 9 He Z, Carini S, Sim I, Weng C. Visual aggregate analysis of eligibility features of clinical trials.. J Biomed Inform 2015; 54: 241-55.
  • 10 Weng C, Li Y, Ryan P, Zhang Y, Liu F, Gao J. et al. A distribution-based method for assessing the differences between clinical trial target populations and patient populations in electronic health records.. Appl Clin Inform 2014; 5 (Suppl. 02) 463-79.
  • 11 Dixon S, Shackley P, Bonham J, Ibbotson R. Putting a value on the avoidance of false positive results when screening for inherited metabolic disease in the newborn.. J Inherit Metab Dis 2012; 35 (Suppl. 01) 169-76.
  • 12 Macarthur D. Methods: Face up to false positives.. Nature 2012; 487 7408 427-8.
  • 13 Moyer AM. Handling false positives in the genomic era.. Clin Chem 2012; 58 (Suppl. 11) 1605-6.
  • 14 IOM, in Clinical Data as the Basic Staple of Health Learning: Creating and Protecting a Public Good: Workshop Summary.. Washington (DC): IOM; 2010
  • 15 IOM, in Digital Infrastructure for the Learning Health System: The Foundation for Continuous Improvement in Health and Health Care: Workshop Series Summary C. Grossmann C, Powers B, McGinnis JM. editors. Washington (DC): IOM; 2011
  • 16 IOM, in Key Capabilities of an Electronic Health Record System: Letter Report.. Washington (DC): 2003
  • 17 Adler-Milstein J, DesRoches CM, Kralovec P, Foster G, Worzala C, Charles D. et al. Electronic Health Record Adoption In US Hospitals: Progress Continues, But Challenges Persist.. Health Aff (Millwood) 2015; 34 (Suppl. 12) 2174-80.
  • 18 Embi PJ, Payne PR. Evidence generating medicine: redefining the research-practice relationship to complete the evidence cycle.. Med Care 2013; 51 (Suppl. 03) S87-91.
  • 19 Etheredge LM. A rapid-learning health system.. Health Aff (Millwood) 2007; 26 (Suppl. 02) w107-18.
  • 20 Rubin JC, Friedman CP. Weaving together a healthcare improvement tapestry. Learning health system brings together health data stakeholders to share knowledge and improve health.. J AHIMA 2014; 85 (Suppl. 05) 38-43.
  • 21 IOM, in Observational Studies in a Learning Health System: Workshop Summary.. Washington (DC): 2013
  • 22 IOM, in Large Simple Trials and Knowledge Generation in a Learning Health System: Workshop Summary.. Washington (DC): 2013
  • 23 IOM, in Patients Charting the Course: Citizen Engagement and the Learning Health System: Workshop Summary. Olsen LA, Saunders RS, McGinnis JM. editors. Washington (DC): 2011
  • 24 Amin W, Tsui FR, Borromeo C, Chuang CH, Espino JU, Ford D. et al. PaTH: towards a learning health system in the Mid-Atlantic region.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 633-6.
  • 25 Forrest CB, Margolis PA, Bailey LC, Marsolo K, Del Beccaro MA, Finkelstein JA. et al. PEDSnet: a National Pediatric Learning Health System.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 602-6.
  • 26 Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system.. Health Aff (Millwood) 2014; 33 (Suppl. 07) 1163-70.
  • 27 McGlynn EA, Lieu TA, Durham ML, Bauck A, Laws R, Go AS J. et al. Developing a data infrastructure for a learning health system: the PORTAL network.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 596-601.
  • 28 Starren JB, Winter AQ, Lloyd-Jones DM. Enabling a Learning Health System through a Unified Enterprise Data Warehouse: The Experience of the Northwestern University Clinical and Translational Sciences (NUCATS) Institute.. Clin Transl Sci 2015; 8 (Suppl. 04) 269-71.
  • 29 Delaney BC, Curcin V, Andreasson A, Arvanitis TN, Bastiaens H, Corrigan D. et al. Translational Medicine and Patient Safety in Europe: TRANSFoRm-Architecture for the Learning Health System in Europe.. Biomed Res Int 2015; 2015: 961526.
  • 30 Friedman C, Rubin J, Brown J, Buntin M, Corn M, Etheredge L. et al. Toward a science of learning systems: a research agenda for the high-functioning Learning Health System.. J Am Med Inform Assoc 2015; 22 (Suppl. 01) 43-50.
  • 31 Psek WA, Stametz RA, Bailey-Davis LD, Davis DJ., Darer J, Faucett WA. et al. Operationalizing the learning health care system in an integrated delivery system.. EGEMS (Wash DC) 2015; 3 (Suppl. 01) 1122.
  • 32 Weng C. Optimizing Clinical Research Participant Selection with Informatics.. Trends Pharmacol Sci 2015; 36 (Suppl. 11) 706-9.
  • 33 Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-centered clinical research network.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 578-82.
  • 34 Chen R.T, Glasser J.W., Rhodes P.H., Davis R.L., Barlow W.E., Thompson R.S., Mullooly JP, Black SB, Shinefield HR, Vadheim CM, Marcy SM, Ward JI. et al. Vaccine Safety Datalink project: a new tool for improving vaccine safety monitoring in the United States.. The Vaccine Safety Datalink Team. Pediatrics 1997; 99 (Suppl. 06) 765-73.
  • 35 Ross TRD, Ng JS, Brown R, Pardee MC, Hornbrook G, Hart JF Steiner. The HMO Research Network Virtual Data Warehouse: A Public Data Model to Support Collaboration.. EGEMS (Wash DC) 2014; 2 (Suppl. 01) p. 1049.
  • 36 Platt R, Carnahan RM, Brown JS, Chrischilles LH, Curtis S, Hennessy JC, Nelson JA, Racoosin M, Robb Schneeweiss S, Toh S, Weiner MG. The U S Food and Drug Administration’s Mini-Sentinel program: status and direction. Pharmacoepidemiol Drug Saf 2012; 21 (Suppl. 01) p. 1-8.
  • 37 Sittig DF, Hazlehurst BL, Brown J, Murphy S, Rosenman M, Tarczy-Hornoch P. et al. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.. Med Care 2012; Jul 50 Suppl: S49-59.
  • 38 Randhawa GS. Building electronic data infrastructure for comparative effectiveness research: accomplishments, lessons learned and future steps.. J Comp Eff Res 2014; 3 (Suppl. 06) 567-72.
  • 39 Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA. et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future.. Genet Med 2013; 15 (Suppl. 10) 761-71.
  • 40 De Moor G, Sundgren M, Kalra D, Schmidt A, Dugas M, Claerhout B. et al. Using electronic health records for clinical research: the case of the EHR-4CR project.. J Biomed Inform 2015; 53: 162-73.
  • 41 Beresniak A, Schmidt A, Proeve J, Bolanos E, Patel N, Ammour N. et al. Cost-benefit assessment of using electronic health records data for clinical research versus current practices: Contribution of the Electronic Health Records for Clinical Research (EHR4CR) European Project.. Contemp Clin Trials 2015; 46 p. 85-91.
  • 42 Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour JC. et al. ,E.-A. consortium. Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project.. J Am Med Inform Assoc 2013; 20 (Suppl. 01) 184-92.
  • 43 Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ. et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers.. Stud Health Technol Inform 2015; 216: 574-8.
  • 44 Nielsen M. Reinventing Discovery: The New Era of Networked Science.. Princeton: Univ. Press; 2011
  • 45 Perrin JM, Batlivala SP, Cheng TL. In the Aftermath of the National Children’s Study.. JAMA Pediatr 2015; 169 (Suppl. 06) 519-20.
  • 46 Landrigan PJ, Baker DB. The National Children’s Study--end or new beginning?. N Engl J Med 2015; 372 (Suppl. 16) 1486-7.
  • 47 caBIG Strategic Planning Workspace.. The Cancer Biomedical Informatics Grid (caBIG): infrastructure and applications for a worldwide research community.. Stud Health Technol Inform 2007; 129 (Suppl. 01) 330-4.
  • 48 Wilcox A, Randhawa G, Embi P, Cao H, Kuperman GJ. Sustainability considerations for health research and analytic data infrastructures.. EGEMS (Wash DC) 2014; 2 (Suppl. 02) 1113.
  • 49 Randhawa GS, Slutsky JR. Building sustainable multi-functional prospective electronic clinical data systems.. Med Care 2012; 50 Suppl: S3-6.
  • 50 Masys DR, Harris PA, Fearn PA, Kohane IS. Designing a public square for research computing.. Sci Transl Med 2012; 4 (Suppl. 149) 149fs32.
  • 51 Brailer DJ. From Santa Barbara to Washington: a person’s and a nation’s journey toward portable health information.. Health Aff (Millwood) 2007; 26 (Suppl. 05) w581-8.
  • 52 Chen B, Butte AJ. Leveraging Big Data to Transform Target Selection and Drug Discovery.. Clin Pharmacol Ther 2016; Mar 99 (Suppl. 03) 285-97.
  • 53 Yu S, Liao KP, Shaw SY, Gainer VS, Churchill SE, Szolovits P. et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.. J Am Med Inform Assoc 2015; 22 (Suppl. 05) 993-1000.
  • 54 Hansen MM, Miron-Shatz T, Lau AY, Paton C. Big Data in Science and Healthcare: A Review of Recent Literature and Perspectives. Contribution of the IMIA Social Media Working Group.. Yearb Med Inform 2014; 9: 21-6.
  • 55 Gittelman S, Lange V, Gotway Crawford CA, Okoro CA, Lieb E, Dhingra SS. et al. A new source of data for public health surveillance: Facebook likes.. J Med Internet Res 2015; 17 (Suppl. 04) e98.
  • 56 Kuehn BM. Twitter Streams Fuel Big Data Approaches to Health Forecasting.. JAMA 2015; 314 (Suppl. 19) 2010-2.
  • 57 Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data.. JAMA 2014; 311 (Suppl. 24) 2479-80.
  • 58 Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J. et al. The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data.. J Am Med Inform Assoc 2014; 21 (Suppl. 06) 957-8.
  • 59 Bourne PE, Bonazzi V, Dunn M, Green ED, Guyer M, Komatsoulis G. et al. The NIH Big Data to Knowledge (BD2K) initiative.. J Am Med Inform Assoc 2015; 22 (Suppl. 06) 1114.
  • 60 Lorgelly PK, Doble B, Knott RJ, Cancer I. Realising the Value of Linked Data to Health Economic Analyses of Cancer Care: A Case Study of Cancer 2015.. Pharmacoeconomics 2016; Feb 34 (Suppl. 02) 139-54.
  • 61 Kaushal RG., Hripcsak G, Ascheim DD, Bloom T, Campion TR Jr, Caplan AL. et al. Changing the research landscape: the New York City Clinical Data Research Network.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 587-90.
  • 62 Deng B, Fradkin M, Rouet JM, Moore RH, Ko-pans DB, Boas DAM.. Lundqvist, and Q. Fanget al. Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging.. J Biomed Opt 2015; 20 (Suppl. 08) 80502.
  • 63 Blanchet L, Smolinska A. Data Fusion in Metabolomics and Proteomics for Biomarker Discovery.. Methods Mol Biol 2016; 1362: 209-23.
  • 64 Wu Q, Li JV, Seyfried F, le Roux CW, Ashrafian H, Athanasiou T. et al. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery.. Int J Obes (Lond) 2015; 39 (Suppl. 07) 1126-34.
  • 65 Heath AP, Greenway M, Powell R, Spring J, Suarez R, Hanley D. et al. Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets.. J Am Med Inform Assoc 2014; 21 (Suppl. 06) 969-75.
  • 66 Hsieh PJ. Healthcare professionals’ use of health clouds: Integrating technology acceptance and status quo bias perspectives.. Int J Med Inform 2015; 84 (Suppl. 07) 512-23.
  • 67 Ohmann C, Canham S, Danielyan E, Robertshaw S, Legre Y, Clivio L. et al. ‘Cloud computing’ and clinical trials: report from an ECRIN workshop.. Trials 2015; 16: 318.
  • 68 Ohm P. Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization.. UCLA Law Review 2010; 57: 1701-77.
  • 69 Naveed M, Aydayn E, Clayton EW, Fellay J, Gunter CA, Hubaux JP. et al. Privacy in the Genomic Era.. ACM Comput Surv 2015 48(1).
  • 70 Li Y, Jiang X, Wang S, Xiong H, Ohno-Machado L. VERTIcal Grid lOgistic regression (VERTIGO).. J Am Med Inform Assoc 2016; 23 (Suppl. 03) 570-9.
  • 71 Lu CL, Wang S, Ji Z, Wu Y, Xiong L, Jiang X. et al. WebDISCO: a web service for distributed cox model learning without patient-level data sharing.. J Am Med Inform Assoc 2015; 22 (Suppl. 06) 1212-9.
  • 72 Wu Y, Jiang X, Wang S, Jiang W, Li P, Ohno-Mach-ado L. Grid multi-category response logistic models.. BMC Med Inform Decis Mak 2015; 15: 10.
  • 73 Wu Y, Jiang X, Kim J, Ohno-Machado L. Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.. J Am Med Inform Assoc 2012; 19 (Suppl. 05) 758-64.
  • 74 Wang S, Jiang X, Wu Y, Cui L, Cheng S, Ohno-Machado L. EXpectation Propagation LOgistic REgRession (EXPLORER): distributed privacy-preserving online model learning.. J Biomed Inform 2013; 46 (Suppl. 03) 480-96.
  • 75 Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support.. Yearb Med Inform 2008; 67-79.
  • 76 Musen MA, Bean CA, Cheung KH, Dumontier M, Durante KA, Gevaert O. et al. Rocca-Serra, S.A. Sansone, J.A. Wiser; CEDAR team. The center for expanded data annotation and retrieval.. J Am Med Inform Assoc 2015; 22 (Suppl. 06) 1148-52.
  • 77 Oellrich A, Collier N, Groza T, Rebholz-Schuh-mann D, Shah N, Bodenreider O. et al. The digital revolution in phenotyping.. Brief Bioinform 2015
  • 78 Anderson WP. Reproducibility: Stamp out shabby research conduct.. Nature 2015; 519 7542 158.
  • 79 Ohno-Machado L. A journal’s role in resource sharing and reproducibility.. J Am Med Inform Assoc 2015; 22 (Suppl. 03) 491.
  • 80 Safran C. Reuse of clinical data.. Yearb Med Inform 2014; 9: 52-4.
  • 81 Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PR, Bernstam EV. et al. Caveats for the use of operational electronic health record data in comparative effectiveness research.. Med Care 2013; 51 8 Suppl 3 S30-7.
  • 82 Mittelstadt BD, Floridi L. The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts.. Sci Eng Ethics 2016; Apr 22 (Suppl. 02) 303-41.
  • 83 Hruby GW, Boland MR, Cimino JJ, Gao J, Wilcox AB, Hirschberg J. et al. Characterization of the biomedical query mediation process.. AMIA Jt Summits Transl Sci Proc 2013; 2013: 89-93.
  • 84 Hruby GW, Cimino JJ, Patel V, Weng C. Toward a cognitive task analysis for biomedical query mediation.. AMIA Jt Summits Transl Sci Proc 2014; 2014: 218-22.
  • 85 Hruby GW, Ancker J, Weng C. Use of Self-Service Query Tools Varies by Experience and Research Knowledge.. Stud Health Technol Inform 2015; 216: 1023.
  • 86 Hruby GW, Matsoukas K, Cimino JJ, Weng C. Facilitating biomedical researchers’ interrogation of electronic health record data: Ideas from outside of biomedical informatics.. J Biomed Inform 2016; 60: 376-84.
  • 87 Hoxha J, Chandar P, He Z, Cimino J, Hanauer D, Weng C. DREAM: Classification scheme for dialog acts in clinical research query mediation.. J Biomed Inform 2016; 59: 89-101.
  • 88 Richesson RL, Chute CG. Health information technology data standards get down to business: maturation within domains and the emergence of interoperability.. J Am Med Inform Assoc 2015; 22 (Suppl. 03) 492-4.
  • 89 Emanuel EJ. Reform of Clinical Research Regulations, Finally.. N Engl J Med 2015; 373 (Suppl. 24) 2296-9.
  • 90 Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM. et al. ClinVar: public archive of relationships among sequence variation and human phenotype.. Nucleic Acids Res 2014; 42 Database issue D980-5.
  • 91 Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S. et al. ClinVar: public archive of interpretations of clinically relevant variants.. Nucleic Acids Res 2016; 44 (Suppl. 01) D862-8.
  • 92 NIH.. NIH Strategic Plan for 2016-2020; 2015.. Available from: http://www.nih.gov/sites/default/files/about-nih/strategic-plan-fy2016-2020-508.pdf.
  • 93 Hohnloser JH, Fischer MR, Konig A, Emmerich B. Data quality in computerized patient records. Analysis of a haematology biopsy report database.. Int J Clin Monit Comput 1994; 11 (Suppl. 04) 233-40.
  • 94 Hogan WR, Wagner MM. Accuracy of data in computer-based patient records.. J Am Med Inform Assoc 1997; 4 (Suppl. 05) 342-55.
  • 95 Aronsky D, Haug PJ. Assessing the quality of clinical data in a computer-based record for calculating the pneumonia severity index.. J Am Med Inform Assoc 2000; 7 (Suppl. 01) 55-65.
  • 96 Thiru K, Hassey A, Sullivan F. Systematic review of scope and quality of electronic patient record data in primary care.. BMJ 2003; 326 7398 1070.
  • 97 de Lusignan S, Valentin T, Chan T, Hague N, Wood O, van Vlymen J. et al. Problems with primary care data quality: osteoporosis as an exemplar.. Inform Prim Care 2004; 12 (Suppl. 03) 147-56.
  • 98 Berner ES, Kasiraman RK, Yu F, Ray MN, Houston TK. Data quality in the outpatient setting: impact on clinical decision support systems.. AMIA Annu Symp Proc 2005; 41-5.
  • 99 Botsis T, Hartvigsen G, Chen F, Weng C. Secondary Use of EHR: Data Quality Issues and Informatics Opportunities.. AMIA Jt Summits Transl Sci Proc 2010; 2010: 1-5.
  • 100 Chan KS, Fowles JB, Weiner JP. Review: electronic health records and the reliability and validity of quality measures: a review of the literature.. Med Care Res Rev 2010; 67 (Suppl. 05) 503-27.
  • 101 Nahm M. Data quality in clinical research.. Clinical Research Informatics. London: Springer-Verlag; 2012. p. 175-201.
  • 102 Weiskopf NG, Hripcsak G, Swaminathan S, Weng C. Defining and measuring completeness of electronic health records for secondary use.. J Biomed Inform 2013; 46 (Suppl. 05) 830-6.
  • 103 Nahm ML, Pieper CF, Cunningham MM. Quantifying data quality for clinical trials using electronic data capture.. PLoS One 2008; 3 (Suppl. 08) e3049.
  • 104 Weiner MG, Embi PJ. Toward reuse of clinical data for research and quality improvement: the end of the beginning?. Ann Intern Med 2009; 151 (Suppl. 05) 359-60.
  • 105 Van den Broeck J, Cunningham SA, Eeckels R, Herbst K. Data cleaning: detecting, diagnosing, and editing data abnormalities.. PLoS Med 2005; 2 (Suppl. 10) e267.
  • 106 Hayes P. The ethics of cleaning data.. Clin Nurs Res 2004; 13 (Suppl. 02) 95-7.
  • 107 Pipino LL, Lee YW, Wang RY. Data quality assessment. Commun.. ACM 2002; 45 (Suppl. 04) 211-8.
  • 108 Wang RY, Strong DM. Beyond accuracy: what data quality means to data consumers.. J Manage Inf Syst 1996; 12 (Suppl. 04) 5-33.
  • 109 Kahn MG, Brown JS, Chun AT, Davidson BN, Meeker D, Ryan PB. et al. Transparent reporting of data quality in distributed data networks.. EGEMS (Wash DC) 2015; 3 (Suppl. 01) 1052.
  • 110 Embi PJ, Payne PR. Advancing methodologies in Clinical Research Informatics (CRI): foundational work for a maturing field.. J Biomed Inform 2014; 52: 1-3.
  • 111 Curtis LH, Brown J, Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network.. Health Aff (Millwood) 2014; 33 (Suppl. 07) 1178-86.
  • 112 Brown JS, Rusincovitch SA, Kho AN, Marsolo K, Curtis L. Development of a national distributed research network data infrastructure: Design of the PCORnet common data model.. In: Proceedings of the 2015 American Medical Informatics Association.; San Francisco, CA: 2015. p. 302.
  • 113 Delude CM. Deep phenotyping: The details of disease.. Nature 2015; 527 7576 S14-5.
  • 114 Frey LJ, Lenert L, Lopez-Campos G. EHR Big Data Deep Phenotyping. Contribution of the IMIA Genomic Medicine Working Group.. Yearb Med Inform 2014; 9: 206-11.
  • 115 Robinson PN. Deep phenotyping for precision medicine.. Hum Mutat 2012; 33 (Suppl. 05) 777-80.
  • 116 Stepniak B, Papiol S, Hammer C, Ramin A, Everts S, Hennig L. et al. Accumulated environmental risk determining age at schizophrenia onset: a deep phenotyping-based study.. Lancet Psychiatry 2014; 1 (Suppl. 06) 444-53.
  • 117 Hripcsak G, Albers DJ. Next-generation pheno-typing of electronic health records.. J Am Med Inform Assoc 2013; 20 (Suppl. 01) 117-21.
  • 118 Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 576-7.
  • 119 Error prone.. Nature 2012; 487 7408 406.
  • 120 Kingsmore SF. Incidental swimming with millstones.. Sci Transl Med 2013; 5 (Suppl. 194) 194ed10.
  • 121 Tse H. Publishing: Curb temptation to skip quality control.. Nature 2012; 488 7413 591.
  • 122 Clinical Genetics Has a Big Problem That’s Affecting People’s Lives. [December 29, 2015] Available from: http://www.theatlantic.com/science/archive/2015/12/why-human-genetics-research-is-full-of-costly-mistakes/420693/.
  • 123 Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M. et al. Phases of biomarker development for early detection of cancer.. J Natl Cancer Inst 2001; 93 (Suppl. 14) 1054-61.
  • 124 Bonney R, Phillips TB, Ballard HL, Enck JW. Can citizen science enhance public understanding of science?. Public Underst Sci 2016; 25 (Suppl. 01) 2-16.
  • 125 Bottles K. Will the quantified self movement take off in health care?. Physician Exec 2012; 38 (Suppl. 05) 74-5.

Correspondence to:

Chunhua Weng, PhD, FACMI
Department of Biomedical Informatics
Columbia University
622 W 168 Street, PH-20
New York, NY 10032, USA

  • References

  • 1 Embi PJ, Payne PR. Clinical research informatics: challenges, opportunities and definition for an emerging domain.. J Am Med Inform Assoc 2009; 16 (Suppl. 03) 316-27.
  • 2 Zerhouni EA. Translational and clinical science--time for a new vision.. N Engl J Med 2005; 353 (Suppl. 15) p. 1621-3.
  • 3 Bandodkar AJ, Jia W, Yardimci C, Wang CX, Ramirez J, Wang J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study.. Anal Chem 2015; 87 (Suppl. 01) 394-8.
  • 4 IOM, in Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease.. Washington (DC): IOM; 2011
  • 5 Kohane IS. Health Care Policy. Ten things we have to do to achieve precision medicine.. Science 2015; 349 6243 37-8.
  • 6 Kahn MG, Weng C. Clinical research informatics: a conceptual perspective.. J Am Med Inform Assoc 2012; 19 (Suppl. 01) e36-42.
  • 7 Ma H, Weng C. Identification of Questionable Exclusion Criteria in Mental Disorder Clinical Trials Using a Medical Encyclopedia.. Pac Symp Biocomput 2016; 21: 219-30.
  • 8 He Z, Wang S, Borhanian E, Weng C. Assessing the Collective Population Representativeness of Related Type 2 Diabetes Trials by Combining Public Data from ClinicalTrials.gov and NHANES.. Stud Health Technol Inform 2015; 216: 569-73.
  • 9 He Z, Carini S, Sim I, Weng C. Visual aggregate analysis of eligibility features of clinical trials.. J Biomed Inform 2015; 54: 241-55.
  • 10 Weng C, Li Y, Ryan P, Zhang Y, Liu F, Gao J. et al. A distribution-based method for assessing the differences between clinical trial target populations and patient populations in electronic health records.. Appl Clin Inform 2014; 5 (Suppl. 02) 463-79.
  • 11 Dixon S, Shackley P, Bonham J, Ibbotson R. Putting a value on the avoidance of false positive results when screening for inherited metabolic disease in the newborn.. J Inherit Metab Dis 2012; 35 (Suppl. 01) 169-76.
  • 12 Macarthur D. Methods: Face up to false positives.. Nature 2012; 487 7408 427-8.
  • 13 Moyer AM. Handling false positives in the genomic era.. Clin Chem 2012; 58 (Suppl. 11) 1605-6.
  • 14 IOM, in Clinical Data as the Basic Staple of Health Learning: Creating and Protecting a Public Good: Workshop Summary.. Washington (DC): IOM; 2010
  • 15 IOM, in Digital Infrastructure for the Learning Health System: The Foundation for Continuous Improvement in Health and Health Care: Workshop Series Summary C. Grossmann C, Powers B, McGinnis JM. editors. Washington (DC): IOM; 2011
  • 16 IOM, in Key Capabilities of an Electronic Health Record System: Letter Report.. Washington (DC): 2003
  • 17 Adler-Milstein J, DesRoches CM, Kralovec P, Foster G, Worzala C, Charles D. et al. Electronic Health Record Adoption In US Hospitals: Progress Continues, But Challenges Persist.. Health Aff (Millwood) 2015; 34 (Suppl. 12) 2174-80.
  • 18 Embi PJ, Payne PR. Evidence generating medicine: redefining the research-practice relationship to complete the evidence cycle.. Med Care 2013; 51 (Suppl. 03) S87-91.
  • 19 Etheredge LM. A rapid-learning health system.. Health Aff (Millwood) 2007; 26 (Suppl. 02) w107-18.
  • 20 Rubin JC, Friedman CP. Weaving together a healthcare improvement tapestry. Learning health system brings together health data stakeholders to share knowledge and improve health.. J AHIMA 2014; 85 (Suppl. 05) 38-43.
  • 21 IOM, in Observational Studies in a Learning Health System: Workshop Summary.. Washington (DC): 2013
  • 22 IOM, in Large Simple Trials and Knowledge Generation in a Learning Health System: Workshop Summary.. Washington (DC): 2013
  • 23 IOM, in Patients Charting the Course: Citizen Engagement and the Learning Health System: Workshop Summary. Olsen LA, Saunders RS, McGinnis JM. editors. Washington (DC): 2011
  • 24 Amin W, Tsui FR, Borromeo C, Chuang CH, Espino JU, Ford D. et al. PaTH: towards a learning health system in the Mid-Atlantic region.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 633-6.
  • 25 Forrest CB, Margolis PA, Bailey LC, Marsolo K, Del Beccaro MA, Finkelstein JA. et al. PEDSnet: a National Pediatric Learning Health System.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 602-6.
  • 26 Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system.. Health Aff (Millwood) 2014; 33 (Suppl. 07) 1163-70.
  • 27 McGlynn EA, Lieu TA, Durham ML, Bauck A, Laws R, Go AS J. et al. Developing a data infrastructure for a learning health system: the PORTAL network.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 596-601.
  • 28 Starren JB, Winter AQ, Lloyd-Jones DM. Enabling a Learning Health System through a Unified Enterprise Data Warehouse: The Experience of the Northwestern University Clinical and Translational Sciences (NUCATS) Institute.. Clin Transl Sci 2015; 8 (Suppl. 04) 269-71.
  • 29 Delaney BC, Curcin V, Andreasson A, Arvanitis TN, Bastiaens H, Corrigan D. et al. Translational Medicine and Patient Safety in Europe: TRANSFoRm-Architecture for the Learning Health System in Europe.. Biomed Res Int 2015; 2015: 961526.
  • 30 Friedman C, Rubin J, Brown J, Buntin M, Corn M, Etheredge L. et al. Toward a science of learning systems: a research agenda for the high-functioning Learning Health System.. J Am Med Inform Assoc 2015; 22 (Suppl. 01) 43-50.
  • 31 Psek WA, Stametz RA, Bailey-Davis LD, Davis DJ., Darer J, Faucett WA. et al. Operationalizing the learning health care system in an integrated delivery system.. EGEMS (Wash DC) 2015; 3 (Suppl. 01) 1122.
  • 32 Weng C. Optimizing Clinical Research Participant Selection with Informatics.. Trends Pharmacol Sci 2015; 36 (Suppl. 11) 706-9.
  • 33 Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-centered clinical research network.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 578-82.
  • 34 Chen R.T, Glasser J.W., Rhodes P.H., Davis R.L., Barlow W.E., Thompson R.S., Mullooly JP, Black SB, Shinefield HR, Vadheim CM, Marcy SM, Ward JI. et al. Vaccine Safety Datalink project: a new tool for improving vaccine safety monitoring in the United States.. The Vaccine Safety Datalink Team. Pediatrics 1997; 99 (Suppl. 06) 765-73.
  • 35 Ross TRD, Ng JS, Brown R, Pardee MC, Hornbrook G, Hart JF Steiner. The HMO Research Network Virtual Data Warehouse: A Public Data Model to Support Collaboration.. EGEMS (Wash DC) 2014; 2 (Suppl. 01) p. 1049.
  • 36 Platt R, Carnahan RM, Brown JS, Chrischilles LH, Curtis S, Hennessy JC, Nelson JA, Racoosin M, Robb Schneeweiss S, Toh S, Weiner MG. The U S Food and Drug Administration’s Mini-Sentinel program: status and direction. Pharmacoepidemiol Drug Saf 2012; 21 (Suppl. 01) p. 1-8.
  • 37 Sittig DF, Hazlehurst BL, Brown J, Murphy S, Rosenman M, Tarczy-Hornoch P. et al. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.. Med Care 2012; Jul 50 Suppl: S49-59.
  • 38 Randhawa GS. Building electronic data infrastructure for comparative effectiveness research: accomplishments, lessons learned and future steps.. J Comp Eff Res 2014; 3 (Suppl. 06) 567-72.
  • 39 Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA. et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future.. Genet Med 2013; 15 (Suppl. 10) 761-71.
  • 40 De Moor G, Sundgren M, Kalra D, Schmidt A, Dugas M, Claerhout B. et al. Using electronic health records for clinical research: the case of the EHR-4CR project.. J Biomed Inform 2015; 53: 162-73.
  • 41 Beresniak A, Schmidt A, Proeve J, Bolanos E, Patel N, Ammour N. et al. Cost-benefit assessment of using electronic health records data for clinical research versus current practices: Contribution of the Electronic Health Records for Clinical Research (EHR4CR) European Project.. Contemp Clin Trials 2015; 46 p. 85-91.
  • 42 Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour JC. et al. ,E.-A. consortium. Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project.. J Am Med Inform Assoc 2013; 20 (Suppl. 01) 184-92.
  • 43 Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ. et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers.. Stud Health Technol Inform 2015; 216: 574-8.
  • 44 Nielsen M. Reinventing Discovery: The New Era of Networked Science.. Princeton: Univ. Press; 2011
  • 45 Perrin JM, Batlivala SP, Cheng TL. In the Aftermath of the National Children’s Study.. JAMA Pediatr 2015; 169 (Suppl. 06) 519-20.
  • 46 Landrigan PJ, Baker DB. The National Children’s Study--end or new beginning?. N Engl J Med 2015; 372 (Suppl. 16) 1486-7.
  • 47 caBIG Strategic Planning Workspace.. The Cancer Biomedical Informatics Grid (caBIG): infrastructure and applications for a worldwide research community.. Stud Health Technol Inform 2007; 129 (Suppl. 01) 330-4.
  • 48 Wilcox A, Randhawa G, Embi P, Cao H, Kuperman GJ. Sustainability considerations for health research and analytic data infrastructures.. EGEMS (Wash DC) 2014; 2 (Suppl. 02) 1113.
  • 49 Randhawa GS, Slutsky JR. Building sustainable multi-functional prospective electronic clinical data systems.. Med Care 2012; 50 Suppl: S3-6.
  • 50 Masys DR, Harris PA, Fearn PA, Kohane IS. Designing a public square for research computing.. Sci Transl Med 2012; 4 (Suppl. 149) 149fs32.
  • 51 Brailer DJ. From Santa Barbara to Washington: a person’s and a nation’s journey toward portable health information.. Health Aff (Millwood) 2007; 26 (Suppl. 05) w581-8.
  • 52 Chen B, Butte AJ. Leveraging Big Data to Transform Target Selection and Drug Discovery.. Clin Pharmacol Ther 2016; Mar 99 (Suppl. 03) 285-97.
  • 53 Yu S, Liao KP, Shaw SY, Gainer VS, Churchill SE, Szolovits P. et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.. J Am Med Inform Assoc 2015; 22 (Suppl. 05) 993-1000.
  • 54 Hansen MM, Miron-Shatz T, Lau AY, Paton C. Big Data in Science and Healthcare: A Review of Recent Literature and Perspectives. Contribution of the IMIA Social Media Working Group.. Yearb Med Inform 2014; 9: 21-6.
  • 55 Gittelman S, Lange V, Gotway Crawford CA, Okoro CA, Lieb E, Dhingra SS. et al. A new source of data for public health surveillance: Facebook likes.. J Med Internet Res 2015; 17 (Suppl. 04) e98.
  • 56 Kuehn BM. Twitter Streams Fuel Big Data Approaches to Health Forecasting.. JAMA 2015; 314 (Suppl. 19) 2010-2.
  • 57 Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data.. JAMA 2014; 311 (Suppl. 24) 2479-80.
  • 58 Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J. et al. The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data.. J Am Med Inform Assoc 2014; 21 (Suppl. 06) 957-8.
  • 59 Bourne PE, Bonazzi V, Dunn M, Green ED, Guyer M, Komatsoulis G. et al. The NIH Big Data to Knowledge (BD2K) initiative.. J Am Med Inform Assoc 2015; 22 (Suppl. 06) 1114.
  • 60 Lorgelly PK, Doble B, Knott RJ, Cancer I. Realising the Value of Linked Data to Health Economic Analyses of Cancer Care: A Case Study of Cancer 2015.. Pharmacoeconomics 2016; Feb 34 (Suppl. 02) 139-54.
  • 61 Kaushal RG., Hripcsak G, Ascheim DD, Bloom T, Campion TR Jr, Caplan AL. et al. Changing the research landscape: the New York City Clinical Data Research Network.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 587-90.
  • 62 Deng B, Fradkin M, Rouet JM, Moore RH, Ko-pans DB, Boas DAM.. Lundqvist, and Q. Fanget al. Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging.. J Biomed Opt 2015; 20 (Suppl. 08) 80502.
  • 63 Blanchet L, Smolinska A. Data Fusion in Metabolomics and Proteomics for Biomarker Discovery.. Methods Mol Biol 2016; 1362: 209-23.
  • 64 Wu Q, Li JV, Seyfried F, le Roux CW, Ashrafian H, Athanasiou T. et al. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery.. Int J Obes (Lond) 2015; 39 (Suppl. 07) 1126-34.
  • 65 Heath AP, Greenway M, Powell R, Spring J, Suarez R, Hanley D. et al. Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets.. J Am Med Inform Assoc 2014; 21 (Suppl. 06) 969-75.
  • 66 Hsieh PJ. Healthcare professionals’ use of health clouds: Integrating technology acceptance and status quo bias perspectives.. Int J Med Inform 2015; 84 (Suppl. 07) 512-23.
  • 67 Ohmann C, Canham S, Danielyan E, Robertshaw S, Legre Y, Clivio L. et al. ‘Cloud computing’ and clinical trials: report from an ECRIN workshop.. Trials 2015; 16: 318.
  • 68 Ohm P. Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization.. UCLA Law Review 2010; 57: 1701-77.
  • 69 Naveed M, Aydayn E, Clayton EW, Fellay J, Gunter CA, Hubaux JP. et al. Privacy in the Genomic Era.. ACM Comput Surv 2015 48(1).
  • 70 Li Y, Jiang X, Wang S, Xiong H, Ohno-Machado L. VERTIcal Grid lOgistic regression (VERTIGO).. J Am Med Inform Assoc 2016; 23 (Suppl. 03) 570-9.
  • 71 Lu CL, Wang S, Ji Z, Wu Y, Xiong L, Jiang X. et al. WebDISCO: a web service for distributed cox model learning without patient-level data sharing.. J Am Med Inform Assoc 2015; 22 (Suppl. 06) 1212-9.
  • 72 Wu Y, Jiang X, Wang S, Jiang W, Li P, Ohno-Mach-ado L. Grid multi-category response logistic models.. BMC Med Inform Decis Mak 2015; 15: 10.
  • 73 Wu Y, Jiang X, Kim J, Ohno-Machado L. Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.. J Am Med Inform Assoc 2012; 19 (Suppl. 05) 758-64.
  • 74 Wang S, Jiang X, Wu Y, Cui L, Cheng S, Ohno-Machado L. EXpectation Propagation LOgistic REgRession (EXPLORER): distributed privacy-preserving online model learning.. J Biomed Inform 2013; 46 (Suppl. 03) 480-96.
  • 75 Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support.. Yearb Med Inform 2008; 67-79.
  • 76 Musen MA, Bean CA, Cheung KH, Dumontier M, Durante KA, Gevaert O. et al. Rocca-Serra, S.A. Sansone, J.A. Wiser; CEDAR team. The center for expanded data annotation and retrieval.. J Am Med Inform Assoc 2015; 22 (Suppl. 06) 1148-52.
  • 77 Oellrich A, Collier N, Groza T, Rebholz-Schuh-mann D, Shah N, Bodenreider O. et al. The digital revolution in phenotyping.. Brief Bioinform 2015
  • 78 Anderson WP. Reproducibility: Stamp out shabby research conduct.. Nature 2015; 519 7542 158.
  • 79 Ohno-Machado L. A journal’s role in resource sharing and reproducibility.. J Am Med Inform Assoc 2015; 22 (Suppl. 03) 491.
  • 80 Safran C. Reuse of clinical data.. Yearb Med Inform 2014; 9: 52-4.
  • 81 Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PR, Bernstam EV. et al. Caveats for the use of operational electronic health record data in comparative effectiveness research.. Med Care 2013; 51 8 Suppl 3 S30-7.
  • 82 Mittelstadt BD, Floridi L. The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts.. Sci Eng Ethics 2016; Apr 22 (Suppl. 02) 303-41.
  • 83 Hruby GW, Boland MR, Cimino JJ, Gao J, Wilcox AB, Hirschberg J. et al. Characterization of the biomedical query mediation process.. AMIA Jt Summits Transl Sci Proc 2013; 2013: 89-93.
  • 84 Hruby GW, Cimino JJ, Patel V, Weng C. Toward a cognitive task analysis for biomedical query mediation.. AMIA Jt Summits Transl Sci Proc 2014; 2014: 218-22.
  • 85 Hruby GW, Ancker J, Weng C. Use of Self-Service Query Tools Varies by Experience and Research Knowledge.. Stud Health Technol Inform 2015; 216: 1023.
  • 86 Hruby GW, Matsoukas K, Cimino JJ, Weng C. Facilitating biomedical researchers’ interrogation of electronic health record data: Ideas from outside of biomedical informatics.. J Biomed Inform 2016; 60: 376-84.
  • 87 Hoxha J, Chandar P, He Z, Cimino J, Hanauer D, Weng C. DREAM: Classification scheme for dialog acts in clinical research query mediation.. J Biomed Inform 2016; 59: 89-101.
  • 88 Richesson RL, Chute CG. Health information technology data standards get down to business: maturation within domains and the emergence of interoperability.. J Am Med Inform Assoc 2015; 22 (Suppl. 03) 492-4.
  • 89 Emanuel EJ. Reform of Clinical Research Regulations, Finally.. N Engl J Med 2015; 373 (Suppl. 24) 2296-9.
  • 90 Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM. et al. ClinVar: public archive of relationships among sequence variation and human phenotype.. Nucleic Acids Res 2014; 42 Database issue D980-5.
  • 91 Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S. et al. ClinVar: public archive of interpretations of clinically relevant variants.. Nucleic Acids Res 2016; 44 (Suppl. 01) D862-8.
  • 92 NIH.. NIH Strategic Plan for 2016-2020; 2015.. Available from: http://www.nih.gov/sites/default/files/about-nih/strategic-plan-fy2016-2020-508.pdf.
  • 93 Hohnloser JH, Fischer MR, Konig A, Emmerich B. Data quality in computerized patient records. Analysis of a haematology biopsy report database.. Int J Clin Monit Comput 1994; 11 (Suppl. 04) 233-40.
  • 94 Hogan WR, Wagner MM. Accuracy of data in computer-based patient records.. J Am Med Inform Assoc 1997; 4 (Suppl. 05) 342-55.
  • 95 Aronsky D, Haug PJ. Assessing the quality of clinical data in a computer-based record for calculating the pneumonia severity index.. J Am Med Inform Assoc 2000; 7 (Suppl. 01) 55-65.
  • 96 Thiru K, Hassey A, Sullivan F. Systematic review of scope and quality of electronic patient record data in primary care.. BMJ 2003; 326 7398 1070.
  • 97 de Lusignan S, Valentin T, Chan T, Hague N, Wood O, van Vlymen J. et al. Problems with primary care data quality: osteoporosis as an exemplar.. Inform Prim Care 2004; 12 (Suppl. 03) 147-56.
  • 98 Berner ES, Kasiraman RK, Yu F, Ray MN, Houston TK. Data quality in the outpatient setting: impact on clinical decision support systems.. AMIA Annu Symp Proc 2005; 41-5.
  • 99 Botsis T, Hartvigsen G, Chen F, Weng C. Secondary Use of EHR: Data Quality Issues and Informatics Opportunities.. AMIA Jt Summits Transl Sci Proc 2010; 2010: 1-5.
  • 100 Chan KS, Fowles JB, Weiner JP. Review: electronic health records and the reliability and validity of quality measures: a review of the literature.. Med Care Res Rev 2010; 67 (Suppl. 05) 503-27.
  • 101 Nahm M. Data quality in clinical research.. Clinical Research Informatics. London: Springer-Verlag; 2012. p. 175-201.
  • 102 Weiskopf NG, Hripcsak G, Swaminathan S, Weng C. Defining and measuring completeness of electronic health records for secondary use.. J Biomed Inform 2013; 46 (Suppl. 05) 830-6.
  • 103 Nahm ML, Pieper CF, Cunningham MM. Quantifying data quality for clinical trials using electronic data capture.. PLoS One 2008; 3 (Suppl. 08) e3049.
  • 104 Weiner MG, Embi PJ. Toward reuse of clinical data for research and quality improvement: the end of the beginning?. Ann Intern Med 2009; 151 (Suppl. 05) 359-60.
  • 105 Van den Broeck J, Cunningham SA, Eeckels R, Herbst K. Data cleaning: detecting, diagnosing, and editing data abnormalities.. PLoS Med 2005; 2 (Suppl. 10) e267.
  • 106 Hayes P. The ethics of cleaning data.. Clin Nurs Res 2004; 13 (Suppl. 02) 95-7.
  • 107 Pipino LL, Lee YW, Wang RY. Data quality assessment. Commun.. ACM 2002; 45 (Suppl. 04) 211-8.
  • 108 Wang RY, Strong DM. Beyond accuracy: what data quality means to data consumers.. J Manage Inf Syst 1996; 12 (Suppl. 04) 5-33.
  • 109 Kahn MG, Brown JS, Chun AT, Davidson BN, Meeker D, Ryan PB. et al. Transparent reporting of data quality in distributed data networks.. EGEMS (Wash DC) 2015; 3 (Suppl. 01) 1052.
  • 110 Embi PJ, Payne PR. Advancing methodologies in Clinical Research Informatics (CRI): foundational work for a maturing field.. J Biomed Inform 2014; 52: 1-3.
  • 111 Curtis LH, Brown J, Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network.. Health Aff (Millwood) 2014; 33 (Suppl. 07) 1178-86.
  • 112 Brown JS, Rusincovitch SA, Kho AN, Marsolo K, Curtis L. Development of a national distributed research network data infrastructure: Design of the PCORnet common data model.. In: Proceedings of the 2015 American Medical Informatics Association.; San Francisco, CA: 2015. p. 302.
  • 113 Delude CM. Deep phenotyping: The details of disease.. Nature 2015; 527 7576 S14-5.
  • 114 Frey LJ, Lenert L, Lopez-Campos G. EHR Big Data Deep Phenotyping. Contribution of the IMIA Genomic Medicine Working Group.. Yearb Med Inform 2014; 9: 206-11.
  • 115 Robinson PN. Deep phenotyping for precision medicine.. Hum Mutat 2012; 33 (Suppl. 05) 777-80.
  • 116 Stepniak B, Papiol S, Hammer C, Ramin A, Everts S, Hennig L. et al. Accumulated environmental risk determining age at schizophrenia onset: a deep phenotyping-based study.. Lancet Psychiatry 2014; 1 (Suppl. 06) 444-53.
  • 117 Hripcsak G, Albers DJ. Next-generation pheno-typing of electronic health records.. J Am Med Inform Assoc 2013; 20 (Suppl. 01) 117-21.
  • 118 Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality.. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 576-7.
  • 119 Error prone.. Nature 2012; 487 7408 406.
  • 120 Kingsmore SF. Incidental swimming with millstones.. Sci Transl Med 2013; 5 (Suppl. 194) 194ed10.
  • 121 Tse H. Publishing: Curb temptation to skip quality control.. Nature 2012; 488 7413 591.
  • 122 Clinical Genetics Has a Big Problem That’s Affecting People’s Lives. [December 29, 2015] Available from: http://www.theatlantic.com/science/archive/2015/12/why-human-genetics-research-is-full-of-costly-mistakes/420693/.
  • 123 Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M. et al. Phases of biomarker development for early detection of cancer.. J Natl Cancer Inst 2001; 93 (Suppl. 14) 1054-61.
  • 124 Bonney R, Phillips TB, Ballard HL, Enck JW. Can citizen science enhance public understanding of science?. Public Underst Sci 2016; 25 (Suppl. 01) 2-16.
  • 125 Bottles K. Will the quantified self movement take off in health care?. Physician Exec 2012; 38 (Suppl. 05) 74-5.