Nuklearmedizin 2016; 55(01): 7-14
DOI: 10.3413/Nukmed-0754-15-07
Original article
Schattauer GmbH

Prognostic significance of volume-based 18F-FDG PET/CT parameter in patients with surgically resected non-small cell lung cancer

Comparison with immunohistochemical biomarkersPrognostische Bedeutung volumenbasierter 18F-FDG PET/CT-Parameter bei Patienten mit operativ entfernten nicht-kleinzelligem BronchialkarzinomVergleich mit immunhistochemischen Biomarkern
J. Y. Lee
1   Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
,
J. Y. Choi
2   Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
,
J. H. Heo
3   Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
,
J. Han
4   Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
,
S. J. Jang
1   Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
,
K. Kim
5   Department of thoracic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
,
J. Kim
5   Department of thoracic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
,
Y. M. Shim
5   Department of thoracic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
,
B.-T. Kim
2   Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
› Author Affiliations
Further Information

Publication History

received: 02 July 2015

accepted in revised form: 30 October 2015

Publication Date:
19 December 2017 (online)

Summary

Aim: We investigated the prognostic value of volume-based 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) parameters compared with other factors including several immunohistochemical biomarkers in patients with surgically resected non-small cell lung cancer (NSCLC). Patients, methods: Study participants: 290 patients with surgically resected and histopathologically confirmed NSCLC. The maxmum standardized uptake value (SUVmax) and metabolic tumour volume (MTV) of the primary tumour were obtained on 18F-FDG PET/ computed tomography (CT) for initial staging and Ki-67 labeling index (LI), p16, CD31 and cyclin E were evaluated in the primary tumours by immunohistochemical staining. Survival analyses for variables including PET parameters, immunohistochemical biomarker and other clinical factors were performed using the Kaplan-Meier method and Cox proportional hazards regression analysis. Results: In univariate analyses, tumour stage, tumour size, and MTV were significant prognostic factors for decreased overall survival (OS) and disease-free survival (DFS). Multivariate analyses showed MTV and tumour stage were significant predictors of poor OS (MTV, hazard ratio (HR) = 1.135, p = 0.015; stage, HR = 0.644, p = 0.025) and DFS (MTV, HR = 1.128, p = 0.043; stage, HR = 0.541, p = 0.009). Conclusion: The MTV of primary tumours is a significant prognostic factor for survival along with tumour stage in patients with surgically resected NSCLC. The MTV can predict OS and DFS better than immuno histochemical biomarkers.

Zusammenfassung

Ziel: Wir untersuchten den prognostischen Stellenwert volumenbasierter Parameter der 18F-FDG-PET im Vergleich zu anderen Faktoren, darunter immunhistochemische Biomarker, bei Patienten mit operativ entfernten nicht-kleinzelligem Bronchialkarzinom (NSCLC). Patienten, Methoden: Studienteilnehmer: 290 Patienten mit operativ entfernten und histopathologisch gesicherten NSCLC. Im Rahmen des initialen Staging wurden der maximale standardisierte Uptake (SUVmax) und das metabolische Tumorvolumen (MTV) der Primärtumore mittels 18F-FDG PET/CT bestimmt; Ki-67 Markierungsindex (LI), p16, CD31 und Cyclin E wurden anhand immunhistochemischer Färbungen der Primärtumore beurteilt. Die Überlebensanalysen für die Variablen, u.a. PET-Parameter, immunhistochemische Biomarker und andere klinische Faktoren, erfolgten anhand der Kaplan-Meier-Methode sowie der Regressions-analyse nach Cox (proportionales Hazard-Modell). Ergebnisse: In univariaten Analysen waren Stadium und Größe des Tumors und MTV unabhängige prognostische Faktoren für ein geringeres Gesamtüberleben (OS) und krankheitsfreies Überleben (DFS). Multivariate Analysen weisen MTV und Tumorstadium als signifikante Prädiktoren für ein schlechtes OS (MTV: Hazard Ratio (HR) = 1,135, p = 0,015; Stadium: HR = 0,644, p = 0,025) und DFS (MTV: HR = 1,128, p = 0,043; Stadium: HR = 0,541, p = 0,009) aus. Schlussfolgerung: Bei Patienten mit operativ entfernten NSCLC ist das MTV der Primärtumore, zusammen mit dem Tumorstadium, ein bedeutender prognostischer Überlebensfaktor. Das MTV kann OS und DFS besser vorhersagen als immunhistochemische Biomarker.

 
  • References

  • 1 Cavarga I, Kocan P, Boor A. et al. Immunohistochemical markers of proliferation and vascularisation in preneoplastic bronchial lesions and invasive non-small cell lung cancer. Neoplasma 2009; 56: 414-421.
  • 2 Chen HH, Chiu NT, Su WC. et al. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012; 264: 559-566.
  • 3 Choi JY, Lee KS, Kwon OJ. et al. Improved detection of second primary cancer using integrated [18F] fluorodeoxyglucose positron emission tomography and computed tomography for initial tumor staging. J Clin Oncol 2005; 23: 7654-7659.
  • 4 Downey RJ, Akhurst T, Gonen M. et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 2004; 22: 3255-3260.
  • 5 Fletcher JW, Djulbegovic B, Soares HP. et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008; 49: 480-508.
  • 6 Fukuse T, Hirata T, Naiki H. et al. Prognostic significance of cyclin E overexpression in resected non-small cell lung cancer. Cancer Res 2000; 60: 242-244.
  • 7 Giatromanolaki A, Koukourakis MI, Theodossiou D. et al. Comparative evaluation of angiogenesis assessment with anti-factor-VIII and anti-CD31 immunostaining in non-small cell lung cancer. Clin Cancer Res 1997; 3: 2485-2492.
  • 8 Hommura F, Dosaka-Akita H, Mishina T. et al. Prognostic significance of p27KIP1 protein and ki-67 growth fraction in non-small cell lung cancers. Clin Cancer Res 2000; 6: 4073-4081.
  • 9 Huang C, Liu D, Masuya D. et al. Clinical application of biological markers for treatments of resectable non-small-cell lung cancers. Br J Cancer 2005; 92: 1231-1239.
  • 10 Huang LN, Wang DS, Chen YQ. et al. Meta-analysis for cyclin E in lung cancer survival. Clin Chim Acta 2012; 413: 663-668.
  • 11 Hyun SH, Ahn HK, Kim H. et al. Volume-based assessment by F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2014; 41: 50-58.
  • 12 Hyun SH, Choi JY, Kim K. et al. Volume-based parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection. Ann Surg 2013; 257: 364-370.
  • 13 Hyun SH, Choi JY, Shim YM. et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010; 17: 115-122.
  • 14 Inoue M, Takakuwa T, Minami M. et al. Clinicopathologic factors influencing postoperative prognosis in patients with small-sized adenocarcinoma of the lung. J Thorac Cardiovasc Surg 2008; 135: 830-836.
  • 15 Jakobsen JN, Sorensen JB. Clinical impact of ki-67 labeling index in non-small cell lung cancer. Lung Cancer 2013; 79: 1-7.
  • 16 Kim K, Kim SJ, Kim IJ. et al. Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected non-small-cell lung cancer. Nucl Med Commun 2012; 33: 613-620.
  • 17 Ko DH, Choi JY, Song YM. et al. The usefulness of 18F-FDG PET as a cancer screening test. Nucl Med Mol Imaging 2008; 42: 444-450.
  • 18 Lee SJ, Choi JY, Lee HJ. et al. Prognostic value of volume-based (18)F-fluorodeoxyglucose PET/CT parameters in patients with clinically node-negative oral tongue squamous cell carcinoma. Korean J Radiol 2012; 13: 752-759.
  • 19 Liao S, Penney BC, Wroblewski K. et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2012; 39: 27-38.
  • 20 Liao S, Penney BC, Zhang H. et al. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in Stage IV nonsurgical small-cell lung cancer. Acad Radiol 2012; 19: 69-77.
  • 21 Maddau C, Confortini M, Bisanzi S. et al. Prognostic significance of p53 and Ki-67 antigen expression in surgically treated non-small cell lung cancer: immunocytochemical detection with imprint cytology. Am J Clin Pathol 2006; 125: 425-431.
  • 22 Martin B, Paesmans M, Mascaux C. et al. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer 2004; 91: 2018-2025.
  • 23 Mohamed S, Yasufuku K, Hiroshima K. et al. Prognostic implications of cell cycle-related proteins in primary resectable pathologic N2 nonsmall cell lung cancer. Cancer 2007; 109: 2506-2514.
  • 24 Moon SH, Choi JY, Lee HJ. et al. Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: comparisons of volume-based metabolic parameters. Head Neck 2013; 35: 15-22.
  • 25 Moon SH, Hyun SH, Choi JY. Prognostic significance of volume-based PET parameters in cancer patients. Korean J Radiol 2013; 14: 1-12.
  • 26 Murakami S, Saito H, Sakuma Y. et al. Correlation of 18F-fluorodeoxyglucose uptake on positron emission tomography with Ki-67 index and pathological invasive area in lung adenocarcinomas 30 mm or less in size. Eur J Radiol 2010; 75: 62-66.
  • 27 Pugsley JM, Schmidt RA, Vesselle H. The Ki-67 index and survival in non-small cell lung cancer: a review and relevance to positron emission tomography. Cancer J 2002; 8: 222-233.
  • 28 Rami-Porta R, Crowley JJ, Goldstraw P. The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg 2009; 15: 4-9.
  • 29 Satoh Y, Onishi H, Nambu A. et al. Volume-based parameters measured by using FDG PET/CT in patients with stage I NSCLC treated with stereotactic body radiation therapy: Prognostic value. Radiology 2014; 270: 275-281.
  • 30 Sauter AW, Winterstein S, Spira D. et al. Multifunctional profiling of non-small cell lung cancer using 18F-FDG PET/CT and volume perfusion CT. J Nucl Med 2012; 53: 521-529.
  • 31 Shepherd FA, Crowley J, Van Houtte P. et al. The International Association for the Study of Lung Cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (7th) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol 2007; 2: 1067-1077.
  • 32 Soussan M, Chouahnia K, Maisonobe JA. et al. Prognostic implications of volume-based measurements on FDG PET/CT in stage III non-small-cell lung cancer after induction chemotherapy. Eur J Nucl Med Mol Imaging 2013; 40: 668-676.
  • 33 Sugawara Y, Quint LE, Iannettoni MD. et al. Does the FDG Uptake of Primary Non-Small Cell Lung Cancer Predict Prognosis?. Clin Positron Imaging 1999; 2: 111-118.
  • 34 Takahashi S, Kamata Y, Tamo W. et al. Relationship between postoperative recurrence and expression of cyclin E, p27, and Ki-67 in non-small cell lung cancer without lymph node metastases. Int J Clin Oncol 2002; 7: 349-355.
  • 35 Vesselle H, Freeman JD, Wiens L. et al. Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: new contrary data on prognostic role. Clin Cancer Res 2007; 13: 3255-3263.
  • 36 Vesselle H, Salskov A, Turcotte E. et al. Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index. J Thorac Oncol 2008; 3: 971-978.
  • 37 Watanabe K, Nomori H, Ohtsuka T. et al. [F-18]fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol 2006; 36: 403-409.
  • 38 Yamamoto Y, Nishiyama Y, Ishikawa S. et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007; 34: 1610-1616.
  • 39 Yoo J, Choi JY, Moon SH. et al. Prognostic significance of volume-based metabolic parameters in uterine cervical cancer determined using 18F-fluorodeoxyglucose positron emission tomography. Int J Gynecol Cancer 2012; 22: 1226-1233.
  • 40 Zhang H, Wroblewski K, Liao S. et al. Prognostic value of metabolic tumor burden from 18F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol 2013; 20: 32-40.