Subscribe to RSS
DOI: 10.3413/nukmed-0171
Radiation treatment planning in brain tumours
Potential impact of 3-O-methyl-6-[18F]fluoro-L-DOPA and PETBestrahlungsplanung von HirntumorenPotenzieller Einfluss von 3-O-Methyl-6-[18F]fluor-L-DOPA und PETPublication History
Received:
23 January 2008
accepted in revised form:
28 April 2008
Publication Date:
05 January 2018 (online)
Summary
Aim: Amino acid PET has become an important diagnostic tool for brain tumour imaging. In this data analysis, the potential impact of amino acid PET with 3-O-methyl- 6-[18F]fluoro-L-DOPA ([18F]OMFD) on radiation treatment planning is addressed by the following questions: 1. Was tumour tissue identified with OMFD-PET which was not covered by the conventionally derived planning target volume (PTV)? 2. Would the PTV have been changed incorporating OMFD-PET? Patients, methods: OMFD-PET of 25 patients after subtotal resection of malignant glioma was evaluated. The region of elevated tracer uptake of PET and of contrast enhancing masses on MRI were outlined as separate gross tumour volumes (GTVMRI and GTVOMFD) and reconstructed in the planning CT for comparison with the conventionally drawn GTVconv. A PTVnew based on GTVconv+MRI was calculated. Pairwise differential volumes were calculated to estimate overlap and differential volumes delineation by each image modality and the PTVconv and PTVnew respectively. Results: Differential volume analysis showed > 10 cm3 of GTVOMFD outside GTVconv and GTVMRI in 5/25 patients respectively. From GTVMRI >10 cm3 were found outside GTVOMFD in 8/25 patients. Although all tumour areas indicated by [18F]OMFD were covered by the conventionally derived PTV, based on a GTVOMFD+MRI, the PTVnew would have been enlarged >20% in seven patients. In seven patients the PTVnew would have been reduced. Conclusion: OMFD-PET indicated tumour tissue outside the tumour region identified with MRI, adding valuable information for the delineation of the GTV in radiation treatment planning. OMFD-PET contains the potential to tailor the high dose radiation to the appropriate tumour volume, especially if dose escalation is desired.
Zusammenfassung
Ziel: Die PET mit Aminosäure-Tracern hat sich als wichtige Methode in der Hirntumordiagnostik entwickelt. In dieser Datenanalyse wurde der potenzielle Einfluss von PET mit 3-O-Methyl-6-[18F]fluor-L-DOPA ([18F]OMFD) auf die Bestrahlungsplanung anhand folgender Fragen untersucht: 1. Wurde mit OMFD-PET Hirntumorgewebe identifiziert, das nicht von dem konventionell ermittelten PTV (planning target volume) erfasst wurde? 2. Wäre das PTV unter Einbeziehung des OMFD-PET geändert worden? Patienten, Methoden: Von 25 Patienten wurden die Daten von OMFD-PET nach subtotaler Resektion von malignen Gliomen evaluiert. Die Region mit erhöhter Traceraufnahme im PET und erhöhter Kontrastmittelaufnahme im MRT wurden als separate GTV (gross tumour volume) markiert (GTVOMFD und GTVMRT), im Planungs-CT rekonstruiert und mit dem konventionell ermittelten GTVconv verglichen. Ein PTVneu basierend auf dem GTVcov+MRT wurde berechnet. übereinstimmende und differente Volumenanteile zwischen den Bildmodalitäten bzw dem PTVconv und PTVneu wurden ermittelt. Ergebnisse: Die differentielle Volumenanalyse zeigte > 10 cm3 des GTVOMFD außerhalb von GTVconv und GTVMRT in jeweils 5/25 Patienten. In 8/25 Patienten lag >10 cm3 des GTVMRT außerhalb des GTVOMFD. Wenngleich alle [18F]OMFD-positiven Regionen vom PTVconv erfasst wurden, wäre auf der Basis von GTVOMFD+MRT das PTVneu in sieben Patienten um >20% vergrößert worden. In sieben Patienten wäre das PTVneu verkleinert worden. Schlussfolgerung: OMFD-PET zeigte Tumorgewebe außerhalb der MRT-positiven Areale und liefert zusätzliche Informationen für die Bestimmung des GTV in der Strahlentherapieplanung. OMFD-PET beinhaltet als Zusatzinformation das Potential Hochdosisstrahlentherapie im adäquaten Tumorvolumen zu applizieren, besonders wenn eine Dosiseskalation angestrebt wird.
-
References
- 1 Albert FK, Forsting M, Sartor K. et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994; 34: 45-61.
- 2 Baumert BG, Lutterbach J, Bernays R. et al. Fractionated stereotactic radiotherapy boost after postoperative radiotherapy in patients with high-grade gliomas. Radiother Oncol 2003; 67: 183-190.
- 3 Becherer A, Karanikas G, Szabo M. et al. Brain tumour imaging with PET: a comparison between (18F)fluorodopa and (11C)methionine. Eur J Nucl Med Mol Imaging 2003; 30: 1561-1567.
- 4 Bergmann R, Pietzsch J, Fuechtner F. et al. 3-O-methyl-6-18F-fluoro-L-dopa, a new tumor imaging agent: investigation of transport mechanism in vitro. J Nucl Med 2004; 45: 2116-2122.
- 5 Beuthien-Baumann B, Bredow J, Burchert W. et al. 3-O-Methyl-6-(18F)fluoro-l-DOPA and its evaluation in brain tumour imaging. Eur J Nucl Med Mol Imaging 2003; 30: 1004-1008.
- 6 Brada M, Baumert B. Focal fractionated confor- mal stereotactic boost following conventional radiotherapy ofhigh-grade gliomas: arandomized phase III study A joint study of the EORTC (22972) and the MRC (BR10). Front Radiat Ther Oncol 1999; 33: 241-243.
- 7 Burger PC. Pathologic anatomy and CT correlations in the glioblastoma multiforme. Appl Neurophysiol 1983; 46: 180-187.
- 8 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007; 48: 1468-1481.
- 9 Chung JK, Kim YK, Kim SK. et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002; 29: 176-182.
- 10 Dhermain F, Ducreux D, Bidault F. et al. Use of the functional imaging modalities in radiation therapy treatment planning in patients with glioblastoma. Bull Cancer 2005; 92: 333-342.
- 11 Füchtner F, Steinbach J. Efficient synthesis of the 18F-labelled 3-O-methyl-6-(18F)fluoro-L-DOPA. Appl Radiat Isot 2003; 58: 575-578.
- 12 Füchtner F, Steinbach J, Vorwieger G. 3-O-methyl-6-(18F)fluoro-L-DOPA - a promising substance for tumour imaging. J Lab Compd Radiopharm 1999; 42 (Suppl 1) S267-S269.
- 13 Grosu AL, Lachner R, Wiedenmann N. et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and uC-methion- ine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 2003; 56: 1450-1463.
- 14 Grosu AL, Weber WA, Franz M. et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 511-519.
- 15 Grosu AL, Weber WA, Riedel E. et al. L- (methyl-11C) methionine positron emission tomography for target delineation in resected highgrade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 64-74.
- 16 Halperin EC, Bentel G, Heinz ER. et al. Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 1989; 17: 1347-1350.
- 17 ICRU-Report. ICRU Report 50. Prescribing, Recording and Reporting Photon Beam Therapy. 1993
- 18 ICRU-Report. ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy. (Supplement to ICRU Report 50) 1999
- 19 Kortmann RD, Jeremic B, Weller M. et al. Radiochemotherapy of malignant glioma in adults. Clinical experiences. Strahlenther Onkol 2003; 179: 219-232.
- 20 Kracht LW, Miletic H, Busch S. et al. Delineation of brain tumor extent with (11C)L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170.
- 21 Laperriere N, Zuraw L, Cairncross G. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 2002; 64: 259-273.
- 22 Manon R, Hui S, Chinnaiyan P. et al. The impact of mid-treatment MRI on defining boost volumes in the radiation treatment of glioblastoma multi- forme. Technol Cancer Res Treat 2004; 3: 303-307.
- 23 Mosskin M, Ericson K, Hindmarsh T. et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989; 30: 225-232.
- 24 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687.
- 25 Poetzsch C, Hofheinz F, van den Hoff J. Fast user guided segmentation and quantification of volumes in 3-d datasets. Molec Imag Biol 2005; 7: 152.
- 26 Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000. Eur J Nucl Med 2001; 28: 1707-1723.
- 27 Seither RB, Jose B, Paris KJ. et al. Results of irradiation in patients with high-grade gliomas evaluated by magnetic resonance imaging. Am J Clin Oncol 1995; 18: 297-299.
- 28 Tsao MN, Mehta MP, Whelan TJ. et al. The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys 2005; 63: 47-55.
- 29 Weber WA, Wester HJ, Grosu AL. et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-(methyl- 11C)methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549.