Nuklearmedizin 2011; 50(01): 9-14
DOI: 10.3413/nukmed-0350-10-09
Original article
Schattauer GmbH

Assessment of left ventricular volumes, ejection fraction and mass

Comparison of model-based analysis of ECG-gated 99mTc-SPECT and 18F-FDG-PETBestimmung der linksventrikulären Volumina, Ejektions fraktion und myokardialen MasseVergleich der Modell-basierten Analyse von EKG-getriggerten 99mTc-SPECT und 18F-FDG-PET
A. Khorsand
1   Department of Cardiology, Medical University of Vienna, Austria
,
M. Gyöngyösi
1   Department of Cardiology, Medical University of Vienna, Austria
,
H. Sochor
1   Department of Cardiology, Medical University of Vienna, Austria
,
G. Maurer
1   Department of Cardiology, Medical University of Vienna, Austria
,
G. Karanikas
2   Department of Nuclear Medicine, Medical University of Vienna, Austria
,
R. Dudczak
2   Department of Nuclear Medicine, Medical University of Vienna, Austria
,
E. Schuster
3   Department of Medical Computer Sciences, Medical University of Vienna, Austria
,
G. Porenta
4   Nuclear Medicine Rudolfinerhaus, Vienna, Austria
,
S. Graf
1   Department of Cardiology, Medical University of Vienna, Austria
› Author Affiliations
Further Information

Publication History

received: 08 September 2010

accepted in revised form: 04 November 2010

Publication Date:
28 December 2017 (online)

Summary

Aim: We compared and delineated possible differences of model-based analysis of ECGgated SPECT using 99mTc-sestamibi (Tc- SPECT) with ECG-gated 18F-fluorodeoxyglucose- PET (FDG-PET) for determination of enddiastolic (EDV) and end-systolic (ESV) cardiac volumes, left ventricular ejection fraction (LVEF), and myocardial mass (LVMM). Patients, methods: 24 patients (21 men; age: 54 ± 12years) with coronary artery disease underwent Tc-SPECT and FDG-PET imaging for evaluation of myocardial perfusion and viability. By using model-based analysis EDV, ESV, LVEF and LVMM were calculated from short axis images of both Tc-SPECT and FDGPET. Results: Left ventricular volumes by Tc- SPECT and FDG-PET were 176 ± 60 ml and 181 ± 59 ml for EDV, and 97 ± 44 ml and 103 ± 45 ml for ESV respectively, LVEF was 47 ± 8% by Tc-SPECT and 45 ± 9% by FDG-PET. The LVMM was 214 ± 40 g (Tc-SPECT) and 202 ± 43 g (FDG-PET) (all p = NS, paired t-test). A significant correlation was observed between Tc-SPECT and FDG-PET imaging for calculation of EDV (r = 0.93), ESV (r = 0.93), LVEF (r = 0.83) and LVMM (r = 0.72). Conclusion: ECG-gated Tc-SPECT and FDG-PET using two tracers with different characteristics (perfusion versus metabolism) showed close agreement concerning measurements of left ventricular volumes, contractile function and myocardial mass by using a model-based analysis.

Zusammenfassung

Ziel der Studie war der Vergleich der Modellbasierten Analyse von EKG-getriggerten 99mTc-Sestamibi SPECT (Tc-SPECT) und 18F-Fluordeoxyglukose-PET (FDG-PET) Studien zur Bestimmung von linksventrikulären enddiastolischen (EDV) und endsystolischen (ESV) Volumina, der Linksventrikelfunktion (LVEF) und der myokardialen Masse (LVMM). Patienten, Methoden: 24 Patienten (21 Männer, Alter: 54 ± 12 Jahre) mit koronarer Herzkrankheit wurden mittels EKG-getriggerter Tc-SPECT und FDG-PET zur Bestimmung der myokardialen Perfusion und Vitalität untersucht. Mittels Modell-basierter Analyse wurden EDV, ESV, LVEF und LVMM aus den jeweiligen Kurzachsen- Schnitten der Tc-SPECT und FDG-PET Studien berechnet. Ergebnisse: Die mittels Tc- SPECT und FDG-PET gemessenen linksventrikulären Volumina waren jeweils 176 ± 60 ml und 181 ± 59 ml für EDV und 97 ± 44 ml und 103 ± 45 ml für ESV. Die LVEF (47 ± 8% und 45 ± 9%) und LVMM (214 ± 40 g und 202 ± 43 g) unterschieden sich ebenfalls nicht zwischen Tc-SPECT und FDG-PET (p nicht signifikant für alle paired t-Tests). Es fand sich eine signifikante Korrelation zwischen den mittels Tc-SPECT und FDG-PET errechneten Werten für EDV (r = 0.93), ESV (r = 0.93), LVEF (r = 0.83) und LVMM (r = 0.72). Schlussfolgerung: Die Modell-basierte Bildanalyse EKG-getriggerter kardialer Tc-SPECT und FDG-PET mit zwei Tracern unterschiedlicher Merkmale (Perfusion versus Stoffwechsel) zeigte gute Übereinstimmung der errechneten linksventrikulären Volumina, Auswurffraktion und myokardialen Masse.

 
  • References

  • 1 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
  • 2 De Feyter PJ, van Eenige MJ, Dighton DH. et al. Prognostic value of exercise testing, coronary angiography and left ventriculography 6–8 weeks after myocardial infarction. Circulation 1982; 66: 527-536.
  • 3 Faber TL, Cooke CD, Folks RD. et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 1999; 40: 650-659.
  • 4 Faber TL, Vansant JP, Pettigrew RI. et al. Evaluation of left ventricular endocardial volumes and ejection fractions computed from gated perfusion SPECT with magnetic resonance imaging: comparison of two methods. J Nucl Cardiol 2001; 8: 645-651.
  • 5 Germano G, Kiat H, Kavanagh PB. et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995; 36: 2138-2147.
  • 6 Hattori N, Bengel FM, Mehilli J. et al. Global and regional functional measurements with gated FDG PET in comparison with left ventriculography. Eur J Nucl Med 2001; 28: 221-229.
  • 7 Hoffman EJ, Phelps ME, Wisenberg G. et al. Electrocardiographic gating in positron emission computed tomography. J Comput Assist Tomogr 1979; 3: 733-739.
  • 8 Kanayama S, Matsunari I, Kajinami K. Comparison of gated 13N ammonia PET and gated 99mTc sesta-mibi SPECT for quantitative analysis of global and regional left ventricular function. J Nucl Cardiol 2007; 14: 680-687.
  • 9 Khorsand A, Graf S, Eidherr H. et al. Gated cardiac 13N-NH3 PET for assessment of left ventricular volumes, mass, and ejection fraction: comparison with electrocardiography-gated 18F-FDG PET. J Nucl Med 2005; 46: 2009-2013.
  • 10 Khorsand A, Graf S, Frank H. et al. Model-based analysis of electrocardiography-gated cardiac 18F-FDG PET images to assess left ventricular geometry and contractile function. J Nucl Med 2003; 44: 1741-1746.
  • 11 Khorsand A, Gyongyosi M, Graf S. et al. Assessment of left ventricular volume and ejection fraction: comparison of QGS and MBGS analyses of ECG- gated myocardial perfusion SPECT imaging. Nucl Med Commun 2009; 30: 300-307.
  • 12 Kuhle WG, Porenta G, Huang SC. et al. Issues in the quantitation of reoriented cardiac PET images. J Nucl Med 1992; 33: 1235-1242.
  • 13 Nekolla SG, Miethaner C, Nguyen N. et al. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 1998; 25: 1313-1321.
  • 14 Saab G, Dekemp RA, Ukkonen H. et al. Gated fluorine 18 fluorodeoxyglucose positron emission tomography: determination of global and regional left ventricular function and myocardial tissue characterization. J Nucl Cardiol 2003; 10: 297-303.
  • 15 Schaefer WM, Lipke CS, Nowak B. et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: comparison with cardiac MRI. J Nucl Med 2004; 45: 74-79.
  • 16 Schelbert HR. 18F-deoxyglucose and the assessment of myocardial viability. Seminars in nuclear medicine 2002; 32: 60-69.
  • 17 Schelbert HR. Positron emission tomography for the assessment of myocardial viability. Circulation 1991; 84 (Suppl. 03) I122-I131.
  • 18 Tillisch J, Brunken R, Marshall R. et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884-888.
  • 19 White HD, Norris RM, Brown MA. et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987; 76: 44-51.