What Are the Steps in New Drug Development?
What Are the Steps in New Drug Development?
Preclinical phase
This includes discovering or creating a potential drug, formulating it for appropriate
delivery, in vitro studies, and animal studies.
Traditional chemotherapy agents
In earlier times, the candidate drugs (chemotherapy agents) were identified from natural
compounds and may have been subsequently chemically modified to enhance their properties.
These were tested in cell culture systems or in animal models and then subsequently
formulated for human studies.
”Targeted” agents
The steps in the development of “targeted agents are: Target identification → Creating
appropriate compounds to attack the target by chemical or bioengineering (monoclonal
antibodies) → Formulation/in vitro studies/in vivo studies in animal models.
Additional preclinical studies may include assays to identify the target inhibition
in animal models and pharmacokinetic and pharmacodynamic studies to know the doses
that are able to inhibit the target.
Preclinical studies will establish the following:
-
The pharmacokinetics of the agent
-
The efficacy of the agent in vitro and in animal models
-
The feasibility of creating a formulation of the candidate agent
-
The toxicity and the “lethal” dose in mammalian species. “Lethal dose” may not always
be achieved in case of “targeted” agents. LD50 is defined as the dose which kills
50% of the animals – This was an important dose level which helped to identify a starting
point for phase I trials, especially for phase I trials of traditional chemotherapy
agents
-
Target inhibition and bioassays to demonstrate the same.
Clinical phase
Once a drug has completed preclinical efficacy and toxicity studies, the sponsor decides
to proceed with trials in humans and starts with phase I studies and subsequently
II, III, and IV studies. Phase 0 refers to a specific type of “clinical” trial and
is not a preclinical phase of the drug development. Before starting the clinical trials
in humans, the sponsor has to file an “Investigational New Drug (IND)” application
with the drug controller.
The definition of “IND” as per the CDSCO is “new chemical or biological entity or
a product having a therapeutic indication, but which has never been tested before
on human participants.”
What Is a Phase I Clinical Trial?
What Is a Phase I Clinical Trial?
Conventionally, these are “first-in-human” studies and would generally aim to establish
the safety of an agent in human beings. Since conventional thinking is that higher
the drug dose, more the cancer cell-kill, traditional drug development aimed to identify
the highest dose of the drug that could be safely delivered.
The outcomes of interest from a phase I trial are:
-
Determine a dose that is appropriate for phase II and III testing (recommended phase
II dose [RP2D])
-
Pharmacokinetics of the drug in human beings
-
Information about side effects in human beings
-
Early indications of activity and efficacy.
The information from animal studies was used for identifying the starting dose of
an agent. This is conventionally one-tenth of the LD50 – the a dose is which was considered
low enough, not to cause any harm.
Some Important Terms
Dose-limiting toxicity
Dose-limiting toxicity (DLT) is usually defined as any grade 3–4 non-hematological
toxicity (except nausea and vomiting) or hematological toxicity lasting for >7 days.
This definition traditionally refers to the first cycle of therapy. However, the definition
may be altered based on the context and type of drugs and protocols specific. Example
– in trials of “high-dose therapy” where stem cell rescue is planned, the hematological
toxicity is usually not considered significant.
Maximum tolerated dose
Maximum tolerated dose (MTD) is the dose at which less than one-third of the participants
develop DLT. It may be the same as the RP2D or may be different, especially for targeted
agents where modeling based on pharmacodynamics or target inhibition is taken into
consideration.
Optimum biological dose
Optimum biological dose (OBD) is the dose that produces a desired biological effect
(e.g., target inhibition by pharmacodynamic correlative studies for “targeted” therapies,
or modulation of a certain immune function identified by a specific assay). When conducting
a phase I with a newer targeted or immunotherapy agent, DLT/MTD may not be achieved
in the conventional sense. Hence, the OBD is defined to stop further dose escalations
and conclude the trial.
Recommended phase II dose
RP2D is again protocol specific. Conventionally, many phase I studies in the United
States defined MTD as the RP2D. However, some other trials in Japan and Europe defined
one dose level below the MTD as RP2D. The OBD may be considered as RP2D for targeted
agents.
What Is the Traditional “3 + 3” Model of Drug Development?
What Is the Traditional “3 + 3” Model of Drug Development?
This is an empiric model designed to ensure the safety of participants. In this model,
cohorts of three patients are treated at each dose level. If no DLT occurs, then the
next three patients are doses at the dose level 2 and so on. If at any dose level,
1 of the three participants develops DLT, then 3 more are added at the same dose level.
If 2 or more of the 6 develop DLT, then the dose level below will be considered as
MTD. The MTD may be chosen as RP2D (in traditional chemotherapy agents) or a level
lower than that may be chosen if it is felt that maximum target inhibition may be
achieved.
How Are Dose Levels Calculated in 3 + 3?
How Are Dose Levels Calculated in 3 + 3?
The first dose level is usually one-tenth of the LD50 as described above. The second
level is twice the first, third level is 67% greater than the second, fourth is 50%
greater than the third, fifth is 40% greater than the fourth, and subsequently, each
level is 33% greater than the previous level. This method of escalation was empirically
developed but continues to be used in practice, as it has been found to be associated
with least chances of causing harmful side effects to participants. Since these numbers
closely mimic the mathematical series, it has been called a modified Fibonacci method.
How Do We Calculate Sample Size in a Phase I Trial?
How Do We Calculate Sample Size in a Phase I Trial?
Sample size cannot be accurately calculated in a phase I, as we cannot be sure how
many dose levels will be required to achieve MTD. However, a minimal sample size can
be assumed as 12 patients (6 patients at level 1, and if DLT in 2 or more 6 additional
patients at level “minus” 1). Most phase I trials with conventional agents realize
MTD within 5–7 dose levels – hence, 30–50 patients are recruited. Some phase I trials
may incorporate expansion cohorts and add patients at RP2D for specific tumor types
to get early clues on efficacy. These can increase the size of phase I trials.
Can a Drug Be Approved Based Only on Phase I Trial Data?
Can a Drug Be Approved Based Only on Phase I Trial Data?
It is rare but can happen when exceptional activity is demonstrated in rare conditions
where no previous standard therapy exists. Example is the approval of crizotinib in
ALK-positive lung cancer. Usually, regulatory agencies will require that the results
be confirmed in a larger phase II or III trial.
How Is a Phase I Trial of a “First-in-Human” Agent Different from Phase I Trials of
New Combinations of Existing Agents?
How Is a Phase I Trial of a “First-in-Human” Agent Different from Phase I Trials of
New Combinations of Existing Agents?
Phase I trials may also be conducted to identify the maximum doses of agents when
combined together. For example, if someone wants to try a combination of eribulin
and oxaliplatin – we do know the MTDs of each of these agents, but we do not know
how much is to be used when in combination. Hence, the dose levels in this type of
phase I trial will usually start with a lower than the usual dose of each of these
agents and then escalate in a 3 + 3 model. At each dose level there will be increase
in doses of 1 or both agents as per the traditional 3+3 models (modified Fibonacci).
What Are the Limitations of the 3 + 3 Model?
What Are the Limitations of the 3 + 3 Model?
Although the 3 + 3 model is considered as a safe model and studies have shown that
most of the side effects of agents are actually well captured by the 3 + 3 model,
there are drawbacks.
-
It takes too many “levels” to find the MTD – we have to wait for all three patients
at each dose level to complete at least one cycle before we can plan the next level.
Hence, time is lost
-
Too many patients are treated at lower dose levels where the expectations of efficacy
are minimal or nonexistent. Studies have shown that the chance of response in a phase
I trial is around 5%. Hence, majority of the participants do not benefit from the
trial participation
-
For targeted agents, the MTD is not relevant as maximum target inhibition may be achieved
at lower doses.
Is the “3 + 3” Model Still Valid in the Era of Targeted Treatment?
Is the “3 + 3” Model Still Valid in the Era of Targeted Treatment?
Despite the problems detailed above, 3 + 3 model is still a popular design practiced
for majority of newer agents in oncology. This is because of the overall safety of
this approach. Further, the newer designs (detailed below), though attractive in theory,
have not really helped to speed up the process in practice. For example, in models
such as Bayesian designs, real-time input of data is required with continuous feedback
from the statistician, making it impractical to use in many situations.
What Are the Other Models of Phase I Trials?
What Are the Other Models of Phase I Trials?
-
Accelerated titration design: in this model, intra-patient patient dose escalation
is permitted from cycle to cycle. Doses are escalated in consequtive cycles for the
same patient till DLT occurs. Trials with these designs are able to reduce the number
of patients treated at subtherapeutic doses but are not able to reduce the overall
time duration required to complete the study. This kind of model is suitable for rare
cancer subtypes.
-
Continuous reassessment model (CRM): This uses a Bayesian “prior distribution” to
determine the steepness of the dose–toxicity curve. This requires updating of information
after each patient is treated. Then, the curve is readjusted and dose level for the
next patient is determined
-
For targeted agents – model by Korn et al. Initial accelerated phase – one patient in each dose level until a biological effect
is seen. Then cohorts of 3–6 in each level. If 5–6 responses are seen at a particular
level that is determined as biologically active and trial is closed
-
Rolling 6 design is a method which was proposed for pediatric phase I and recently
has become popular. Pediatric phase I trials often focus on “refining” the MTD, which
is already known from adult phase I trials (not to actually find MTD for a new drug).
Here, the dose window of operation is often narrower, and this model allows faster
completion than a traditional 3 + 3. Here, 2–6 patients are accrued simultaneously
in a particular dose level. The level itself is determined by number already enrolled,
number of DLTs, and number at risk of DLTs.
Can a Phase I Trial Used to Assess Efficacy?
Can a Phase I Trial Used to Assess Efficacy?
Even though the primary aim of a phase I trial is not to assess efficacy, most phase
I studies report preliminary signals of efficacy. Phase I trials that are histological
subtype agnostic can give early indicators as to which cancers are likely to benefit.
This may guide the design of phase II studies with that agent. From the patient's
perspective, efficacy is of primary concern when they agree to participate in a phase
I trial though the informed consent process clearly states that they may not get any
benefit. Overall, the chance of responses in phase I trials is quite low (response
rates 5%–10%).
What Are the Rules in India for the Conduct of Phase I Trials?
What Are the Rules in India for the Conduct of Phase I Trials?
Although phase I trials are allowed by law, there are certain specific rules. They
should be carried out by investigators trained in the field and having necessary facilities
to closely observe the patients. In general, phase I trial (first-in-human) is permitted
for new drug entities developed in India. For molecules developed abroad, first-in-human
studies are permitted only if the study has already enrolled patients in some other
country.
What are Phase Ib and Phase I/II Trials?
What are Phase Ib and Phase I/II Trials?
In phase Ib trials, there is simultaneous recruitment of patients at multiple dose
levels. It is a modified trial design aimed at accelerating the process of finding
the RP2D. It is also useful for dose-finding studies using combinations of agents
Phase I/II trials involve a design of phase I to identify the RP2D, and then, the
same trial continues to recruit patients in the phase II portion at the RP2D. The
patients already recruited at RP2D level in the phase I cohort will also be contribute
to the required sample size for the phase II, thus speeding up the drug development
process.
How are Phase I Trials of Agents used for High-Dose Therapy Different?
How are Phase I Trials of Agents used for High-Dose Therapy Different?
The main difference here is that hematological toxicities are not considered dose
limiting as they are salvaged with the stem cell infusion.
What Are the Minimum Facilities Needed for Conducting a Phase 1 Trial?
What Are the Minimum Facilities Needed for Conducting a Phase 1 Trial?
-
Clinicians familiar with the conducting phase I trials including ways of recording
toxicities, and looking out for unexpected toxicities
-
Statisticians with the ability to manage more complicated designs such as the CRM
-
Trial coordinators/research nurses who are trained to communicate with these patients
-
Laboratory facilities for handling multiple patient samples for pharmacokinetic work
including facilities such as HPLC.
-
Added capacity for pharmacodynamic assessment (target inhibition and immunological
assays) would be desirableAdministrative capability to handle massive amounts of paper
work required for these kinds of studies to fulfill regulatory requirements
-
Large patient pool is again desirable as many patients will have to be screened to
find eligible participants.
What Are the Special Challenges in Performing a Phase I Trial in Pediatric Patients?
Pediatric trials often start after completion of adult trials and focus more on refining
the MTD. A fair idea about the toxicity profile of an agent is already available when
starting a pediatric trial. Pediatric cancers are rarer and very few targeted agents
are currently approved. Within the “pediatric' population, there is wide heterogeneity
by size and age. Traditional 3 + 3 models have been used for a long time, but they
have problem of long accrual times because we have to suspend enrolment after each
block of three have completed at least one cycle and assessment. Hence, newer models
such as rolling 6 have been developed. As for all clinical trials involving minors,
consent is obtained from parents/guardians and must include a witness signature. Assent
must be obtained from adolescent participants.