Neuroradiologie Scan 2023; 13(04): 271-292
DOI: 10.1055/a-2014-2220
CME-Fortbildung

Bildgebende Befunde bei Raumforderungen der kindlichen Orbita

Annie K. Joseph
,
Julie B. Guerin
,
Laurence J. Eckel
,
Lauren A. Dalvin
,
Gesina F. Keating
,
Greta B. Liebo
,
John C. Benson
,
Waleed Brinjikji
,
Nadia Laack
,
V. Michelle Silvera

Durch die Anwendung eines kompartimentbasierten Ansatzes können Radiologen ein Spektrum von Raumforderungen und raumforderungsähnlichen Läsionen, die im kindlichen Augapfel auftreten, diagnostizieren. Im folgenden Beitrag werden die gemeinsamen und differenzierenden Merkmale dieser Läsionen in der Bildgebung beschrieben.

Kernaussagen
  • Persistente fetale Gefäße und Morbus Coats sind die primären Imitatoren eines Retinoblastoms, insbesondere wenn sie fortgeschritten sind und mit Leukokorie und Xanthokorie einhergehen. Das kann unnötige Behandlungen oder eine verzögerte Behandlung zur Folge haben. Eine fehlende Kalzifikation ist ein wesentliches Unterscheidungsmerkmal gegenüber einem Retinoblastom.

  • Die Kontrastmittelanreicherung eines Glioms der Sehbahn kann schwanken und verschwindet manchmal ohne Behandlung. Darüber hinaus wird bei einer Chemotherapie häufig eine verringerte Anreicherung ohne wesentliche Größenveränderungen beobachtet. Vor diesem Hintergrund deuten eine größere Größe und Ausdehnung des Tumors eher auf seine Progression hin.

  • Wenn angrenzende knöcherne Strukturen normal sind, kann ein Rhabdomyosarkom eine benigne Läsion wie das kindliche Hämangiom imitieren. Ein ADC-Schwellenwert ermöglicht eine zuverlässige Unterscheidung zwischen beiden.

  • Die idiopathische orbitale Entzündung ist eine wichtige Differenzialdiagnose eines Lymphoms, da die beiden Entitäten identische Merkmale haben, ihre Behandlung jedoch grundlegend anders ist. Sowohl das arterielle Spin Labeling als auch die diffusionsgewichtete Bildgebung sind nützlich für die Differenzierung zwischen beiden Entitäten.

  • Sowohl orbitale Metastasen eines Neuroblastoms als auch Langerhans-Zell-Histiozytose kommen häufig innerhalb der lateralen oder der hinteren Orbitawand vor. Ein Unterscheidungsmerkmal ist, dass die Langerhans-Zell-Histiozytose mit geringerer Wahrscheinlichkeit einen periostalen neuen Knochen hervorbringt. Außerdem zeigt ein Knochen-Scan mit 123I- oder 131I-markiertem MIBG eine avide Aufnahme durch die Mehrzahl der Neuralleistentumoren.



Publication History

Article published online:
02 October 2023

© 2023. 2022 The Radiological Society of North America. All rights reserved. Originally published in English in RadioGraphics 2022; 42: 880–897. Online published in 10.1148/rg.210116. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kralik SF, Haider KM, Lobo RR. et al. Orbital infantile hemangioma and rhabdomyosarcoma in children: differentiation using diffusion-weighted magnetic resonance imaging. J AAPOS 2018; 22: 27-31
  • 2 Jaju A, Rychlik K, Ryan ME. MRI of pediatric orbital masses: role of quantitative diffusion-weighted imaging in differentiating benign from malignant lesions. Clin Neuroradiol 2020; 30: 615-624
  • 3 Sepahdari AR, Politi LS, Aakalu VK. et al. Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate. AJNR Am J Neuroradiol 2014; 35: 170-175
  • 4 Teixeira SR, Martinez-Rios C, Hu L. et al. Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49: 353-366
  • 5 Silvera VM, Guerin JB, Brinjikji W. et al. Retinoblastoma: What the neuroradiologist needs to know. AJNR Am J Neuroradiol 2021; 42: 618-626
  • 6 Galluzzi P, Hadjistilianou T, Cerase A. et al. Is CT still useful in the study protocol of retinoblastoma?. AJNR Am J Neuroradiol 2009; 30: 1760-1765
  • 7 de Graaf P, Barkhof F, Moll AC. et al. Retinoblastoma: MR imaging parameters in detection of tumor extent. Radiology 2005; 235: 197-207
  • 8 Shastry BS. Persistent hyperplastic primary vitreous: congenital malformation of the eye. Clin Exp Ophthalmol 2009; 37: 884-890
  • 9 Esmer AC, Sivrikoz TS, Gulec EY. et al. Prenatal diagnosis of persistent hyperplastic primary vitreous: report of 2 cases and review of the literature. J Ultrasound Med 2016; 35: 2285-2291
  • 10 Dalvin LA, Udyaver S, Lim LS. et al. Coats disease: clinical features and outcomes by age category in 351 cases. J Pediatr Ophthalmol Strabismus 2019; 56: 288-296
  • 11 Sen M, Shields CL, Honavar SG. et al. Coats disease: an overview of classification, management and outcomes. Indian J Ophthalmol 2019; 67: 763-771
  • 12 Jansen RW, de Bloeme CM, Brisse HJ. et al. MR imaging features to differentiate retinoblastoma from Coatsʼ disease and persistent fetal vasculature. Cancers (Basel) 2020; 12: E3592
  • 13 Smoker WR, Gentry LR, Yee NK. et al. Vascular lesions of the orbit: more than meets the eye. RadioGraphics 2008; 28: 185-204; quiz 325
  • 14 Nassiri N, Rootman J, Rootman DB. et al. Orbital lymphaticovenous malformations: current and future treatments. Surv Ophthalmol 2015; 60: 383-405
  • 15 Bisdorff A, Mulliken JB, Carrico J. et al. Intracranial vascular anomalies in patients with periorbital lymphatic and lymphaticovenous malformations. AJNR Am J Neuroradiol 2007; 28: 335-341
  • 16 International Society for the Study of Vascular Anomalies. ISSVA classification of vascular anomalies, 2018. Accessed March 21, 2023 at: https://www.issva.org/classification
  • 17 Lally SE. Update on orbital lymphatic malformations. Curr Opin Ophthalmol 2016; 27: 413-415
  • 18 Barnacle AM, Theodorou M, Maling SJ. et al. Sclerotherapy treatment of orbital lymphatic malformations: a large single-centre experience. Br J Ophthalmol 2016; 100: 204-208
  • 19 Yong KL, Beckman TJ, Cranstoun M. et al. Orbital schwannoma-management and clinical outcomes. Ophthal Plast Reconstr Surg 2020; 36: 590-595
  • 20 Coy S, Rashid R, Stemmer-Rachamimov A. et al. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol (Berl. 2020; 139: 643-665 [published correction in Acta Neuropathol 2020; 139 (4): 667]
  • 21 Wang Y, Xiao LH. Orbital schwannomas: findings from magnetic resonance imaging in 62 cases. Eye (Lond) 2008; 22: 1034-1039
  • 22 Parker RT, Ovens CA, Fraser CL. et al. Optic nerve sheath meningiomas: prevalence, impact, and management strategies. Eye Brain 2018; 10: 85-99
  • 23 Li P, Wang Z, Zhou Q. et al. A retrospective analysis of vision-impairing tumors among 467 patients with neurofibromatosis type 2. World Neurosurg 2017; 97: 557-564
  • 24 Liu D, Xu D, Zhang Z. et al. Long-term results of gamma knife surgery for optic nerve sheath meningioma. J Neurosurg 2010; 113 (Suppl. 01) 28-33
  • 25 Fried I, Tabori U, Tihan T. et al. Optic pathway gliomas: a review. CNS Oncol 2013; 2: 143-159
  • 26 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl.). 2016; 131: 803-820
  • 27 Ding C, Tihan T. Recent progress in the pathology and genetics of pilocytic and pilomyxoid astrocytomas. Balkan Med J 2019; 36: 3-11
  • 28 Aihara Y, Chiba K, Eguchi S. et al. Pediatric optic pathway/hypothalamic glioma. Neurol Med Chir (Tokyo) 2018; 58: 1-9
  • 29 de Blank PMK, Fisher MJ, Liu GT. et al. Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol 2017; 37 (Suppl. 01) S23-S32
  • 30 Fangusaro J, Witt O, Hernáiz Driever P. et al. Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2020; 21: e305-e316
  • 31 Nicolin G, Parkin P, Mabbott D. et al. Natural history and outcome of optic pathway gliomas in children. Pediatr Blood Cancer 2009; 53: 1231-1237
  • 32 Banerjee A, Jakacki RI, Onar-Thomas A. et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 2017; 19: 1135-1144
  • 33 Menapace D, Mitkov M, Towbin R. et al. The changing face of complicated infantile hemangioma treatment. Pediatr Radiol 2016; 46: 1494-1506
  • 34 Darrow DH, Greene AK, Mancini AJ. et al. Section on Dermatology, Section on Otolaryngology–Head and Neck Surgery, and Section on Plastic Surgery. Diagnosis and management of infantile hemangioma. Pediatrics 2015; 136: e1060-e1104
  • 35 Mulliken JBMD, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982; 69: 412-422
  • 36 Harter N, Mancini AJ. Diagnosis and management of infantile hemangiomas in the neonate. Pediatr Clin North Am 2019; 66: 437-459
  • 37 Krowchuk DP, Frieden IJ, Mancini AJ. et al. Clinical practice guideline for the management of infantile hemangiomas. Pediatrics 2019; 143: e20183475
  • 38 Mamlouk MD, Hess CP. Arterial spin-labeled perfusion for vascular anomalies in the pediatric head and neck. Clin Imaging 2016; 40: 1040-1046
  • 39 Hatayama K, Watanabe H, Ahmed AR. et al. Evaluation of hemangioma by positron emission tomography: role in a multimodality approach. J Comput Assist Tomogr 2003; 27: 70-77
  • 40 Kim JS, Chandler A, Borzykowski R. et al. Maximizing time-resolved MRA for differentiation of hemangiomas, vascular malformations and vascularized tumors. Pediatr Radiol 2012; 42: 775-784
  • 41 Boutroux H, Cellier C, Mosseri V. et al. Orbital rhabdomyosarcoma in children: a favorable primary suitable for a less-invasive treatment strategy. J Pediatr Hematol Oncol 2014; 36: 605-612
  • 42 Conneely MF, Mafee MF. Orbital rhabdomyosarcoma and simulating lesions. Neuroimaging Clin N Am 2005; 15: 121-136
  • 43 Karcioglu ZA, Hadjistilianou D, Rozans M. et al. Orbital rhabdomyosarcoma. Cancer Contr 2004; 11: 328-333
  • 44 Spindle J, Tang SXMD, Davies B. et al. Pediatric idiopathic orbital inflammation: clinical features of 30 cases. Ophthal Plast Reconstr Surg 2016; 32: 270-274
  • 45 Belanger C, Zhang KS, Reddy AK. et al. Inflammatory disorders of the orbit in childhood: a case series. Am J Ophthalmol 2010; 150: 460-463
  • 46 Karim F, Loeffen J, Bramer W. et al. IgG4-related disease: a systematic review of this unrecognized disease in pediatrics. Pediatr Rheumatol Online J 2016; 14: 18
  • 47 Moustafa GA, Topham AK, Aronow ME. et al. Paediatric ocular adnexal lymphoma: a population-based analysis. BMJ Open Ophthalmol 2020; 5: e000483
  • 48 Ren J, Yuan Y, Wu Y. et al. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps. BMC Med Imaging 2018; 18: 6
  • 49 Eissa L, Abdel Razek AAK, Helmy E. Arterial spin labeling and diffusion-weighted MR imaging: utility in differentiating idiopathic orbital inflammatory pseudotumor from orbital lymphoma. Clin Imaging 2021; 71: 63-68
  • 50 AlSemari MA, Perrotta M, Russo C. et al. Orbital myeloid sarcoma (chloroma): report of 2 cases and literature review. Am J Ophthalmol Case Rep 2020; 19: 100806
  • 51 DʼAmbrosio N, Lyo J, Young R. et al. Common and unusual craniofacial manifestations of metastatic neuroblastoma. Neuroradiology 2010; 52: 549-553
  • 52 Rubin PAD, Remulla HD. Orbital venous anomalies demonstrated by spiral computed tomography. Ophthalmology 1997; 104: 1463-1470
  • 53 Kalin-Hajdu E, Colby JB, Idowu O. et al. Diagnosing distensible venous malformations of the orbit with diffusion-weighted magnetic resonance imaging. Am J Ophthalmol 2018; 189: 146-154
  • 54 Avery RA, Katowitz JA, Fisher MJ. et al. Orbital/periorbital plexiform neurofibromas in children with neurofibromatosis type 1: multidisciplinary recommendations for care. Ophthalmology 2017; 124: 123-132
  • 55 Milburn JM, Gimenez Jr CR, Dutweiler E. Clinical images: imaging manifestations of orbital neurofibromatosis type 1. Ochsner J 2016; 16: 431-434
  • 56 Wy S, Kim N. Orbital malignant peripheral nerve sheath tumor arising from neurofibroma. Korean J Ophthalmol 2019; 33: 301-302
  • 57 Gao Y, Moonis G, Cunnane ME. et al. Lacrimal gland masses. AJR Am J Roentgenol 2013; 201: W371-W381
  • 58 Bryant JR, Mantilla-Rivas E, Manrique M. et al. A rare pediatric case of lacrimal gland pleomorphic adenoma. Plast Reconstr Surg Glob Open 2019; 7: e2435
  • 59 Chandrasekhar J, Farr DR, Whear NM. Pleomorphic adenoma of the lacrimal gland: case report. Br J Oral Maxillofac Surg 2001; 39: 390-393
  • 60 Lai T, Prabhakaran VC, Malhotra R. et al. Pleomorphic adenoma of the lacrimal gland: Is there a role for biopsy?. Eye (Lond) 2009; 23: 2-6
  • 61 Chung EM, Smirniotopoulos JG, Specht CS. et al. From the archives of the AFIP: pediatric orbit tumors and tumorlike lesions: nonosseous lesions of the extraocular orbit. RadioGraphics 2007; 27: 1777-1799
  • 62 Cavazza S, Laffi GL, Lodi L. et al. Orbital dermoid cyst of childhood: clinical pathologic findings, classification and management. Int Ophthalmol 2011; 31: 93-97
  • 63 Pushker N, Meel R, Kumar A. et al. Orbital and periorbital dermoid/epidermoid cyst: a series of 280 cases and a brief review. Can J Ophthalmol 2020; 55: 167-171
  • 64 Shields JA, Shields CL. Orbital cysts of childhood: classification, clinical features, and management. Surv Ophthalmol 2004; 49: 281-299
  • 65 Dave TV, Gupta Rathi S, Kaliki S. et al. Orbital and periorbital dermoid cysts: comparison of clinical features and management outcomes in children and adults. Eur J Ophthalmol 2021; 31: 2631-2638
  • 66 Ahmed RA, Eltanamly RM. Orbital epidermoid cysts: a diagnosis to consider. J Ophthalmol 2014; 2014: 508425
  • 67 Rao AA, Naheedy JH, Chen JYY. et al. A clinical update and radiologic review of pediatric orbital and ocular tumors. J Oncol 2013; 2013: 975908
  • 68 Kroiss A, Putzer D, Uprimny C. et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine: a clarification. Eur J Nucl Med Mol Imaging 2012; 39: 543
  • 69 Swift CC, Eklund MJ, Kraveka JM. et al. Updates in diagnosis, management, and treatment of neuroblastoma. RadioGraphics 2018; 38: 566-580
  • 70 Abla O, Rollins B, Ladisch S. Langerhans cell histiocytosis: progress and controversies. Br J Haematol 2019; 187: 559-562
  • 71 Lakatos K, Sterlich K, Pötschger U. et al. Langerhans cell histiocytosis of the orbit: spectrum of clinical and imaging findings. J Pediatr 2021; 230: 174.e1-181.e1
  • 72 Wu C, Li K, Hei Y. et al. MR imaging features of orbital Langerhans cell histiocytosis. BMC Ophthalmol 2019; 19: 263
  • 73 Kilborn TN, Teh J, Goodman TR. Paediatric manifestations of Langerhans cell histiocytosis: a review of the clinical and radiological findings. Clin Radiol 2003; 58: 269-278
  • 74 Esmaili N, Harris GJMD. Langerhans cell histiocytosis of the orbit: spectrum of disease and risk of central nervous system sequelae in unifocal cases. Ophthal Plast Reconstr Surg 2016; 32: 28-34