Laryngorhinootologie 2024; 103(11): 802-815
DOI: 10.1055/a-2055-2273
CME-Fortbildung

Mittelohrfehlbildungen

Middle Ear Malformations
John Martin Hempel
,
Sophia Gantner

Mittelohrfehlbildungen sind eine heterogene Gruppe von angeborenen Anomalien mit unterschiedlichen Ätiologien, Ausprägungen und klinischen Auswirkungen. Ein gründliches Verständnis der genetischen und embryologischen Grundlagen sowie der chirurgischen Behandlungsstrategien ist für ein optimales Ergebnis entscheidend. In diesem Beitrag werden auch Indikationen sowie Vor- und Nachteile einer Hörimplantatversorgung bei solchen Fehlbildungen erläutert.

Abstract

Middle ear malformations (MEMs) represent a diverse group of congenital anomalies with significant implications for auditory function. These malformations, which occur in approximately 0.5 to 3% of conductive hearing loss cases, can arise from various genetic and environmental factors. They often manifest unilaterally and may occur in isolation or as part of a syndromic condition. MEMs are closely associated with abnormalities of the external ear and less frequently with inner ear anomalies.

Embryologically, the middle ear develops from the first and second pharyngeal arches, with interactions between the ectoderm and endoderm contributing to the formation of essential structures such as the tympanic membrane, ossicles and Eustachian tube. Disruptions in these developmental processes can lead to a spectrum of MEMs, ranging from minor defects to severe malformations affecting multiple middle ear components.

Clinical management of MEMs requires a multidisciplinary approach, involving otolaryngologists, pediatricians, and audiologists. Early intervention with appropriate hearing aids, including conventional hearing aids and bone conduction devices, is essential to mitigate the impact of conductive hearing loss on speech and language development, particularly in children.

Surgical planning involves comprehensive preoperative assessment, including high-resolution computed tomography imaging to evaluate middle ear anatomy, the facial nerve course, and vascular anomalies. Traditional surgical approaches such as stapesplasty and tympanoplasty remain mainstays for correcting specific middle ear defects, while advances in technology have expanded the role of active middle ear implants in treating special cases.

In conclusion, MEMs represent a heterogeneous group of congenital anomalies with diverse etiologies and clinical implications. A thorough understanding of their embryological basis, genetic underpinnings, and surgical management strategies is crucial for optimizing outcomes in affected individuals.

Kernaussagen
  • Mittelohrfehlbildungen stellen eine vielfältige Gruppe von angeborenen Anomalien dar, die erhebliche Auswirkungen auf die Hörfunktion haben können. Sie sind verantwortlich für etwa 0,5–3% aller Schallleitungsschwerhörigkeiten und können durch verschiedene genetische und umweltbedingte Faktoren entstehen.

  • Mittelohrfehlbildungen manifestieren sich oft einseitig und können isoliert oder als Teil einer syndromalen Erkrankung auftreten. Sie sind eng mit Anomalien des Außenohrs und seltener mit Innenohranomalien assoziiert.

  • Das klinische Management von Mittelohrfehlbildungen erfordert einen multidisziplinären Ansatz, an dem HNO-Ärzte, Kinderärzte und Audiologen beteiligt sind.

  • Eine frühzeitige Intervention mit geeigneten Hörgeräten, einschließlich herkömmlichen Hörgeräten und Knochenleitungsgeräten, ist unerlässlich, um die Auswirkungen von Schallleitungsschwerhörigkeit auf die Sprachentwicklung bei Kindern zu reduzieren.

  • Die Operationsplanung umfasst eine umfassende präoperative Beurteilung, einschließlich hochauflösender CT-Bildgebung zur Beurteilung der Mittelohranatomie, des Gesichtsnervenverlaufs und von Gefäßanomalien.

  • Traditionelle chirurgische Ansätze wie die Stapesplastik und die Tympanoplastik sind wichtige Säulen für die Korrektur spezifischer Mittelohrfehlbildungen. Zusätzlich stehen KL-IP und AMEI zur Verfügung.



Publication History

Article published online:
04 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Farrior JB. Surgical management of congenital conductive deafness. South Med J 1987; 80: 450-453
  • 2 Raz Y, Lustig L. Surgical management of conductive hearing loss in children. Otolaryngol Clin North Am 2002; 35: 853-875
  • 3 Cremers CW, Teunissen E. The impact of a syndromal diagnosis on surgery for congenital minor ear anomalies. Int J Pediatr Otorhinolaryngol 1991; 22: 59-74
  • 4 Glastonbury CM, Fischbein NJ, Harnsberger HR. et al. Congenital Bifurcation of the Intratemporal Facial Nerve. Am J Neuroradiol 2003; 24: 1334-1337
  • 5 Thompson H, Ohazama A, Sharpe PT. et al. The origin of the stapes and relationship to the otic capsule and oval window. Dev Dyn 2012; 241: 1396-1404
  • 6 Moreano EH, Paparella MM, Zelterman D. et al. Prevalence of facial canal dehiscence and of persistent stapedial artery in the human middle ear: A report of 1000 temporal bones. Laryngoscope 1994; 104: 309-320
  • 7 Sataloff RT, Selber JC. Phylogeny and embryology of the facial nerve and related structures. Part II: Embryology. Ear Nose Throat J 2003; 82: 764-766
  • 8 Jahrsdoerfer RA. Embryology of the facial nerve. Am J Otol 1988; 9 (05) 423-426
  • 9 Booth TN, Vezina LG, Karcher G. et al. Imaging and clinical evaluation of isolated atresia of the oval window. AJNR Am J Neuroradiol 2000; 21: 171-174
  • 10 Sennaroğlu L, Bajin MD, Atay G. et al. Oval window atresia: A novel surgical approach and pathognomonic radiological finding. Int J Pediatr Otorhinolaryngol 2014; 78: 769-776
  • 11 Mastroiacovo P, Corchia C, Botto LD. et al. Epidemiology and genetics of microtia-anotia: a registry based study on over one million births. J Med Genet 1995; 32: 453-457
  • 12 Castilla EE, Orioli IM. Prevalence Rates of Microtia in South America. Int J Epidemiol 1986; 15: 364-368
  • 13 Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn 2020; 249: 1410-1424
  • 14 Carré F, Achard S, Rouillon I. et al. Hearing impairment and osteogenesis imperfecta : Literature review. Eur Ann Otorhinolaryngol Head Neck Dis 2019; 136: 379-383
  • 15 Vincent R, Wegner I, Derks LSM. et al. Congenital oval or round window malformations in children: Surgical findings and results in 17 cases. Laryngoscope 2016; 126: 2552-2558
  • 16 Weerda H. Chirurgie der Ohrmuschel. Stuttgart: Thieme; 2004
  • 17 Belenky WM, Medina JE. First branchial cleft anomalies. Laryngoscope 1980; 90: 28-39
  • 18 Ishimoto S, Ito K, Karino S. et al. Hearing Levels in Patients With Microtia: Correlation With Temporal Bone Malformation. Laryngoscope 2007; 117: 461-465
  • 19 Cole RR, Jahrsdoerfer RA. The risk of cholesteatoma in congenital aural stenosis. Laryngoscope 1990; 100: 576-578
  • 20 Wolf MJF De, Hendrix S, Cremers CWRJ. et al. Better Performance With Bone-Anchored Hearing Aid Than Acoustic Devices in Patients With Severe Air-Bone Gap. Laryngoscope 2011; 121: 613-616
  • 21 Liu Y, Wang Y, Yang L. et al. Bilateral adhesive bone conduction devices in patients with congenital bilateral conductive hearing loss. Am J Otolaryngol 2023; 44: 103923
  • 22 Zhang T, Bulstrode N, Chang KW. et al. International Consensus Recommendations on Microtia, Aural Atresia and Functional Ear Reconstruction. J Int Adv Otol 2019; 15: 204-208
  • 23 Snapp HA, Ausili SA. Hearing with One Ear: Consequences and Treatments for Profound Unilateral Hearing Loss. J Clin Med 2020; 9: 1010
  • 24 Lieu JEC. Speech-Language and Educational Consequences of Unilateral Hearing Loss in Children. Arch Otolaryngol Neck Surg 2004; 130: 524
  • 25 Lieu JEC, Tye-Murray N, Fu Q. Longitudinal study of children with unilateral hearing loss. Laryngoscope 2012; 122: 2088-2095
  • 26 Kuppler K, Lewis M, Evans AK. A review of unilateral hearing loss and academic performance: Is it time to reassess traditional dogmata?. Int J Pediatr Otorhinolaryngol 2013; 77: 617-622
  • 27 Sharma A, Dorman MF, Spahr AJ. A Sensitive Period for the Development of the Central Auditory System in Children with Cochlear Implants: Implications for Age of Implantation. Ear Hear 2002; 23: 532-539
  • 28 McKay CM. Brain Plasticity and Rehabilitation with a Cochlear Implant. Adv Otorhinolaryngol 2018; 81: 57-65
  • 29 Proctor B. Surgical Anatomy of the Ear and Temporal Bone. New York: Thieme; 1989
  • 30 Takegoshi H, Kaga K, Kikuchi S. et al. Facial Canal Anatomy in Patients with Microtia: Evaluation of the Temporal Bones with Thin-Section CT. Radiology 2002; 225: 852-858
  • 31 Celebi I, Oz A, Yildirim H. et al. A case of an aberrant internal carotid artery with a persistent stapedial artery: association of hypoplasia of the A1 segment of the anterior cerebral artery. Surg Radiol Anat 2012; 34: 665-670
  • 32 Mayer TE, Brueckmann H, Siegert R. et al. High-resolution CT of the temporal bone in dysplasia of the auricle and external auditory canal. AJNR Am J Neuroradiol 1997; 18 (01) 53-65
  • 33 Koo YH, Lee JY, Lee JD. et al. Dehiscent high-riding jugular bulb presenting as conductive hearing loss. Medicine (Baltimore) 2018; 97: e11067
  • 34 Merchant SN, Rosowski JJ. Conductive Hearing Loss Caused by Third-Window Lesions of the Inner Ear. Otol Neurotol 2008; 29: 282-289
  • 35 An YS, Lee K-S. The surgical results of stapes fixation in children. Int J Pediatr Otorhinolaryngol 2014; 78: 55-59
  • 36 Frenzel H, Sprinzl G, Streitberger C. et al. The Vibrant Soundbridge in Children and Adolescents. Otol Neurotol 2015; 36: 1216-1222
  • 37 Gantner S, Epp A, Pollotzek M. et al. Long‑term results and quality of life after vibrant soundbridge implantation ( VSBs ) in children and adults with aural atresia. Eur Arch Oto-Rhino-Laryngology 2023;
  • 38 Hempel JM, Sprinzl G, Riechelmann H. et al. A Transcutaneous Active Middle Ear Implant (AMEI) in Children and Adolescents: Long-term, Multicenter Results. Otol Neurotol 2019; 40: 1059-1067
  • 39 Chen K, Lyu H, Xie Y. et al. Morphological Characteristics of Round Window Niche in Congenital Aural Atresia and Stenosis Patients. J Comput Assist Tomogr 2015; 39: 547-551
  • 40 Park E, Lee G, Jung HH. et al. Analysis of Inner Ear Anomalies in Unilateral Congenital Aural Atresia Combined With Microtia. Clin Exp Otorhinolaryngol 2019; 12: 176-180
  • 41 Hempel JM, Braun T, Berghaus A. Funktionelle und ästhetische Rehabilitation der Mikrotie bei Kindern und Jugendlichen. HNO 2013; 61: 655-661
  • 42 Vincent ÃR, Wegner I, Kamalski DMA. et al. Congenital Stapes Ankylosis in Children: Surgical Findings and Results in 35 Cases. Otol Neurotol 2016; 37: 367-373
  • 43 Thomeer H, Kunst H, Verbist B. et al. Congenital Oval or Round Window Anomaly With or Without Abnormal Facial Nerve Course. Otol Neurotol 2012; 33: 779-784
  • 44 De La Cruz A, Teufert KB. Congenital aural atresia surgery: Long-term results. Otolaryngol Neck Surg 2003; 129: 121-127
  • 45 Lambert PR. Congenital aural atresia: Stability of surgical results. Laryngoscope 1998; 108: 1801-1805
  • 46 Oliver ER, Hughley BB, Shonka DC. et al. Revision Aural Atresia Surgery. Otol Neurotol 2011; 32: 252-258
  • 47 Schwager K, Helms J. Microsurgery of large middle ear abnormalities. Technical surgical considerations. HNO 1995; 43: 427-431
  • 48 Mojallal H, Schwab B, Hinze A. et al. Retrospective audiological analysis of bone conduction versus round window vibratory stimulation in patients with mixed hearing loss. Int J Audiol 2015; 54: 391-400
  • 49 Arndt S, Wesarg T, Aschendorff A. et al. Prediction of postoperative speech comprehension with the transcutaneous partially implantable bone conduction hearing system Osia®. HNO 2023; 72: 1-9
  • 50 Teng CS, Yen HY, Barske L. et al. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep 2017; 7 (01) 2497
  • 51 Gheorghe DC, Epure V, Oprea D. et al. Persistent Stapedial Artery, Oval Window Atresia and Congenital Stapes Agenesis-Case Report. Medicina (Kaunas) 2023; 59 (03) 461