Pneumologie 2024; 78(02): 120-130
DOI: 10.1055/a-2229-3854
Serie Außerklinische Beatmung

Technische Aspekte und Neuerungen in der nicht-invasiven und invasiven Beatmung

Technical aspects and innovations in non-invasive and invasive ventilation
1   Internal Medicine, Pulmonary Medicine and Gastroenterology, Pius Hospital Oldenburg, Oldenburg, Deutschland
,
Philipp M. Lepper
2   Klinik für Innere Medizin V, Universitätsklinikum und Universität des Saarlandes, Homburg, Deutschland (Ringgold ID: RIN9379)
› Institutsangaben

Zusammenfassung

Nicht-invasive und invasive Beatmung sind für die Therapie bei akuter und chronischer respiratorischer Insuffizienz unerlässlich geworden. Mehr als ein Drittel der Patienten auf Intensivstationen wird invasiv beatmet, und auch in der außerklinischen Beatmung nimmt die Zahl beatmeter Patienten stetig zu. Während die Normalisierung der Blutgase in vergangenen Jahrzehnten als bedeutsamstes Ziel angesehen wurde und der Gedanke, dass mechanische Beatmung auch Gefahren birgt, kaum eine Rolle spielte, ist der dominierende Gedanke derzeit die Applikation von Beatmung unter möglichst protektiven Gesichtspunkten. Da eine grundlegende Änderung der Gerätetechnik schwierig sein dürfte, wird die Verbesserung protektiver Beatmung und eine Weiterentwicklung des Verständnisses der pathophysiologischen Vorgänge bei akutem und chronischem Lungenversagen auch in der Zukunft eine große Bedeutung haben. Der Artikel fasst unterschiedliche Aspekte der technischen Grundlagen der nicht-invasiven und invasiven Beatmung und deren praktische Umsetzung zusammen.

Abstract

Non-invasive and invasive ventilation have become essential for therapy in acute and chronic respiratory failure. More than one-third of patients in intensive care units receive invasive ventilation, and the number of ventilated patients in out-of-hospital care is also steadily increasing. While normalization of blood gases was considered the most significant goal in past decades, and the idea that mechanical ventilation also poses dangers played little role, the dominant thought at present is the application of ventilation from the most protective point of view possible. Because fundamental change in equipment technology is likely to be difficult, improvement of protective ventilation and further development of understanding of pathophysiologic processes in acute and chronic respiratory failure will continue to be of great importance in the future. This article summarizes different aspects of the technical basis of noninvasive and invasive ventilation and their practical implementation.



Publikationsverlauf

Eingereicht: 02. September 2023

Angenommen nach Revision: 11. Dezember 2023

Artikel online veröffentlicht:
16. Februar 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Esteban A, Frutos-Vivar F, Muriel A. et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 2013; 188: 220-230 DOI: 10.1164/rccm.201212-2169OC. (PMID: 23631814)
  • 2 Alqahtani JS, AlAhmari MD, Alshamrani KH. et al. Patient-Ventilator Asynchrony in Critical Care Settings: National Outcomes of Ventilator Waveform Analysis. Heart Lung 2020; 49: 630-636 DOI: 10.1016/j.hrtlng.2020.04.002. (PMID: 32362397)
  • 3 Letellier C, Lujan M, Arnal JM. et al. Patient-Ventilator Synchronization During Non-invasive Ventilation: A Pilot Study of an Automated Analysis System. Front Med Technol 2021; 3: 690442
  • 4 Heyse D, Schurholz G, Bockling S. et al. Technical aspects of mechanical ventilation. Pneumologie 2014; 68: 811-818 DOI: 10.1055/s-0034-1378072. (PMID: 25489869)
  • 5 Barber RE, Hamilton WK. Oxygen toxicity in man. A prospective study in patients with irreversible brain damage. N Engl J Med 1970; 283: 1478-1784
  • 6 Mauri T, Turrini C, Eronia N. et al. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2017; 195: 1207-1215 DOI: 10.1164/rccm.201605-0916OC. (PMID: 27997805)
  • 7 Sullivan CE, Issa FG, Berthon-Jones M. et al. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981; 1: 862-865
  • 8 Bach JR, Alba A, Mosher R. et al. Intermittent positive pressure ventilation via nasal access in the management of respiratory insufficiency. Chest 1987; 92: 168-170 DOI: 10.1378/chest.92.1.168. (PMID: 3297517)
  • 9 Kinnear WJ, Shneerson JM. Assisted ventilation at home: is it worth considering?. Br J Dis Chest 1985; 79: 313-351 DOI: 10.1016/0007-0971(85)90067-1. (PMID: 3902072)
  • 10 Osadnik CR, Tee VS, Carson-Chahhoud KV. et al. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 7: CD004104 DOI: 10.1002/14651858.CD004104.pub4. (PMID: 28702957)
  • 11 Westhoff M, Schonhofer B, Neumann P. et al. Noninvasive Mechanical Ventilation in Acute Respiratory Failure. Pneumologie 2015; 69: 719-756 DOI: 10.1055/s-0034-1393309. (PMID: 26649598)
  • 12 Raveling T, Vonk J, Struik FM. et al. Chronic non-invasive ventilation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2021; 8: CD002878 DOI: 10.1002/14651858.CD002878.pub3. (PMID: 34368950)
  • 13 Windisch W, Dreher M, Geiseler J. et al. Guidelines for Non-Invasive and Invasive Home Mechanical Ventilation for Treatment of Chronic Respiratory Failure – Update 2017. Pneumologie 2017; 71: 722-795 DOI: 10.1055/s-0043-118040. (PMID: 29139100)
  • 14 Westhoff M, Neumann P, Geiseler J. et al. [Non-invasive Mechanical Ventilation in Acute Respiratory Failure. Clinical Practice Guidelines – on behalf of the German Society of Pneumology and Ventilatory Medicine]. Pneumologie. 2023 DOI: 10.1055/a-2196-9136
  • 15 Dellweg D, Hochrainer D, Klauke M. et al. Determinants of skin contact pressure formation during non-invasive ventilation. J Biomech 2010; 43: 652-657
  • 16 Cardinale M, Cungi PJ, Esnault P. et al. In COPD, Nocturnal Noninvasive Ventilation Reduces the FIO2 Delivered Compared With Long-Term Oxygen Therapy at the Same Flow. Respir Care 2020; 65: 1897-903
  • 17 Storre JH, Huttmann SE, Ekkernkamp E. et al. Oxygen supplementation in noninvasive home mechanical ventilation: the crucial roles of CO2 exhalation systems and leakages. Respir Care 2014; 59: 113-120 DOI: 10.4187/respcare.02596. (PMID: 23801785)
  • 18 Signori D, Bellani G, Calcinati S. et al. Effect of Face Mask Design and Bias Flow on Rebreathing During Noninvasive Ventilation. Respir Care 2019; 64: 793-800
  • 19 Li LL, Dai B, Lu J. et al. Effect of Different Interfaces on FIO2 and CO2 Rebreathing During Noninvasive Ventilation. Respir Care 2021; 66: 25-32
  • 20 Menzel L. Need for communication-related research in mechanically ventilated patients. Am J Crit Care 1994; 3: 165-167 (PMID: 8038843)
  • 21 Schmidt M, Boutmy-Deslandes E, Perbet S. et al. Differential Perceptions of Noninvasive Ventilation in Intensive Care among Medical Caregivers, Patients, and Their Relatives: A Multicenter Prospective Study-The PARVENIR Study. Anesthesiology 2016; 124: 1347-1359
  • 22 Wong AI, Cheung PC, Zhang J. et al. Randomized Controlled Trial of a Novel Communication Device Assessed During Noninvasive Ventilation Therapy. Chest 2021; 159: 1531-1539
  • 23 Deshpande S, Joosten S, Turton A. et al. Oronasal Masks Require a Higher Pressure than Nasal and Nasal Pillow Masks for the Treatment of Obstructive Sleep Apnea. J Clin Sleep Med 2016; 12: 1263-1268
  • 24 Ebben MR, Milrad S, Dyke JP. et al. Comparison of the upper airway dynamics of oronasal and nasal masks with positive airway pressure treatment using cine magnetic resonance imaging. Sleep Breath 2016; 20: 79-85
  • 25 Goren NZ, Sanci E, Ercan Coskun FF. et al. Comparison of BPAP S/T and Average Volume-Assured Pressure Support Modes for Hypercapnic Respiratory Failure in the Emergency Department: A Randomized Controlled Trial. Balkan Med J 2021; 38: 265-271
  • 26 Gursel G, Zerman A, Basarik B. et al. Noninvasive auto-titrating ventilation (AVAPS-AE) versus average volume-assured pressure support (AVAPS) ventilation in hypercapnic respiratory failure patients. Intern Emerg Med 2018; 13: 359-365 DOI: 10.1007/s11739-018-1821-2. (PMID: 29512020)
  • 27 Ekkernkamp E, Kabitz HJ, Walker DJ. et al. Minute ventilation during spontaneous breathing, high-intensity noninvasive positive pressure ventilation and intelligent volume assured pressure support in hypercapnic COPD. COPD 2014; 11: 52-58
  • 28 Nilius G, Katamadze N, Domanski U. et al. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia. Int J Chron Obstruct Pulmon Dis 2017; 12: 1039-1045
  • 29 Kelly JL, Jaye J, Pickersgill RE. et al. Randomized trial of ‘intelligent’ autotitrating ventilation versus standard pressure support non-invasive ventilation: impact on adherence and physiological outcomes. Respirology 2014; 19: 596-603 DOI: 10.1111/resp.12269. (PMID: 24661390)
  • 30 Magdy DM, Metwally A. Effect of average volume-assured pressure support treatment on health-related quality of life in COPD patients with chronic hypercapnic respiratory failure: a randomized trial. Respir Res 2020; 21: 64 DOI: 10.1186/s12931-020-1320-7. (PMID: 32143652)
  • 31 Oscroft NS, Ali M, Gulati A. et al. A randomised crossover trial comparing volume assured and pressure preset noninvasive ventilation in stable hypercapnic COPD. COPD 2010; 7: 398-403 DOI: 10.3109/15412555.2010.528084. (PMID: 21166627)
  • 32 Oscroft NS, Chadwick R, Davies MG. et al. Volume assured versus pressure preset non-invasive ventilation for compensated ventilatory failure in COPD. Respir Med 2014; 108: 1508-1515 DOI: 10.1016/j.rmed.2014.07.010. (PMID: 25123526)
  • 33 Magdy DM, Metwally A. Auto-titrating versus fixed-EPAP intelligent volume-assured pressure support (iVAPS) ventilation in patients with COPD and hypercapnic respiratory failure. Adv Respir Med 2021; 89: 277-283 DOI: 10.5603/ARM.a2021.0056. (PMID: 34196380)
  • 34 Orr JE, Coleman J, Criner GJ. et al. Automatic EPAP intelligent volume-assured pressure support is effective in patients with chronic respiratory failure: A randomized trial. Respirology 2019; 24: 1204-1211
  • 35 Su M, Huai D, Cao J. et al. Auto-trilevel versus bilevel positive airway pressure ventilation for hypercapnic overlap syndrome patients. Sleep Breath 2018; 22: 65-70 DOI: 10.1007/s11325-017-1529-y. (PMID: 28612267)
  • 36 Zou C, Sheng W, Huai D. et al. Comparison between auto-trilevel and bilevel positive airway pressure ventilation for treatment of patients with concurrent obesity hypoventilation syndrome and obstructive sleep apnea syndrome. Sleep Breath 2019; 23: 735-740
  • 37 McArdle N, Rea C, King S. et al. Treating Chronic Hypoventilation With Automatic Adjustable Versus Fixed EPAP Intelligent Volume-Assured Positive Airway Pressure Support (iVAPS): A Randomized Controlled Trial. Sleep 2017; 40 DOI: 10.1093/sleep/zsx136.
  • 38 Junger C, Reimann M, Krabbe L. et al. Non-invasive ventilation with pursed lips breathing mode for patients with COPD and hypercapnic respiratory failure: A retrospective analysis. PLoS One 2020; 15: e0238619
  • 39 Luthgen M, Ruller S, Herzmann C. Characteristics of the deventilation syndrome in COPD patients treated with non-invasive ventilation: an explorative study. Respir Res 2022; 23: 13 DOI: 10.1186/s12931-022-01924-y. (PMID: 35062944)
  • 40 McKenzie J, Nisha P, Cannon-Bailey S. et al. Overnight variation in tidal expiratory flow limitation in COPD patients and its correction: an observational study. Respir Res 2021; 22: 319 DOI: 10.1186/s12931-021-01913-7. (PMID: 34949190)
  • 41 Weiyun T, Linli S, Liuzhao C. Neurally-Adjusted Ventilatory Assist Versus Pressure Support Ventilation During Noninvasive Ventilation. Respir Care 2022; 67: 879-888 DOI: 10.4187/respcare.09881. (PMID: 35177538)
  • 42 Harnisch LO, Olgemoeller U, Mann J. et al. Noninvasive Neurally Adjusted Ventilator Assist Ventilation in the Postoperative Period Produces Better Patient-Ventilator Synchrony but Not Comfort. Pulm Med 2020; 2020: 4705042 DOI: 10.1155/2020/4705042. (PMID: 32655950)
  • 43 Hansen KK, Jensen HI, Andersen TS. et al. Intubation rate, duration of noninvasive ventilation and mortality after noninvasive neurally adjusted ventilatory assist (NIV-NAVA). Acta Anaesthesiol Scand 2020; 64: 309-318 DOI: 10.1111/aas.13499. (PMID: 31651041)
  • 44 Prasad KT, Gandra RR, Dhooria S. et al. Comparing Noninvasive Ventilation Delivered Using Neurally-Adjusted Ventilatory Assist or Pressure Support in Acute Respiratory Failure. Respir Care 2021; 66: 213-220 DOI: 10.4187/respcare.07952. (PMID: 32873750)
  • 45 Tajamul S, Hadda V, Madan K. et al. Neurally-Adjusted Ventilatory Assist Versus Noninvasive Pressure Support Ventilation in COPD Exacerbation: The NAVA-NICE Trial. Respir Care 2020; 65: 53-61 DOI: 10.4187/respcare.07122. (PMID: 31641071)
  • 46 Fichtner F, Moerer O, Weber-Carstens S. et al. Clinical Guideline for Treating Acute Respiratory Insufficiency with Invasive Ventilation and Extracorporeal Membrane Oxygenation: Evidence-Based Recommendations for Choosing Modes and Setting Parameters of Mechanical Ventilation. Respiration 2019; 98: 357-372
  • 47 Aubier M, Trippenbach T, Roussos C. Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol Respir Environ Exerc Physiol 1981; 51: 499-508 DOI: 10.1152/jappl.1981.51.2.499. (PMID: 6790504)
  • 48 Lamy M, Fallat RJ, Koeniger E. et al. Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis 1976; 114: 267-284 DOI: 10.1164/arrd.1976.114.2.267. (PMID: 788563)
  • 49 Serpa Neto A, Cardoso SO, Manetta JA. et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 2012; 308: 1651-1659
  • 50 Karagiannidis C, Brodie D, Strassmann S. et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med 2016; 42: 889-896 DOI: 10.1007/s00134-016-4273-z. (PMID: 26942446)
  • 51 Imsand C, Feihl F, Perret C. et al. Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation. Anesthesiology 1994; 80: 13-22
  • 52 Vitacca M, Clini E, Pagani M. et al. Physiologic effects of early administered mask proportional assist ventilation in patients with chronic obstructive pulmonary disease and acute respiratory failure. Crit Care Med 2000; 28: 1791-1797
  • 53 Kondili E, Prinianakis G, Alexopoulou C. et al. Respiratory load compensation during mechanical ventilation – proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med 2006; 32: 692-699
  • 54 Xirouchaki N, Kondili E, Vaporidi K. et al. Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 2008; 34: 2026-2034
  • 55 Bosma K, Ferreyra G, Ambrogio C. et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 2007; 35: 1048-54 DOI: 10.1097/01.CCM.0000260055.64235.7C. (PMID: 17334259)
  • 56 Zhou Y, Jin X, Lv Y. et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med 2017; 43: 1648-1659 DOI: 10.1007/s00134-017-4912-z. (PMID: 28936695)
  • 57 Roshdy A, Elsayed AS, Saleh AS. Airway Pressure Release Ventilation for Acute Respiratory Failure Due to Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. J Intensive Care Med 2023; 38: 160-168 DOI: 10.1177/08850666221109779. (PMID: 35733377)
  • 58 Combes A, Fanelli V, Pham T. European Society of Intensive Care Medicine Trials Group and the “Strategy of Ultra-Protective lung ventilation with Extracorporeal CO2 Removal for New-Onset moderate to severe ARDS” (SUPERNOVA) investigators. et al. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med 2019; 45: 592-600
  • 59 Combes A, Hajage D, Capellier G. et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med 2018; 378: 1965-1975 DOI: 10.1056/NEJMoa1800385. (PMID: 29791822)
  • 60 Goligher EC, Tomlinson G, Hajage D. et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA 2018; 320: 2251-2259 DOI: 10.1001/jama.2018.14276. (PMID: 30347031)
  • 61 Combes A, Peek GJ, Hajage D. et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med 2020; 46: 2048-2057 DOI: 10.1007/s00134-020-06248-3. (PMID: 33021684)
  • 62 McNamee JJ, Gillies MA, Barrett NA. et al. Effect of Lower Tidal Volume Ventilation Facilitated by Extracorporeal Carbon Dioxide Removal vs Standard Care Ventilation on 90-Day Mortality in Patients With Acute Hypoxemic Respiratory Failure: The REST Randomized Clinical Trial. JAMA 2021; 326: 1013-1023
  • 63 Lobo B, Hermosa C, Abella A. et al. Electrical impedance tomography. Ann Transl Med 2018; 6: 26 DOI: 10.21037/atm.2017.12.06. (PMID: 29430443)
  • 64 Kuk WJ, Wright NR. Bedside Diagnosis of Pulmonary Embolism Using Electrical Impedance Tomography: A Case Report. A A Pract 2022; 16: e01606 DOI: 10.1213/XAA.0000000000001606. (PMID: 35861569)
  • 65 Hyland SL, Faltys M, Huser M. et al. Early prediction of circulatory failure in the intensive care unit using machine learning. Nat Med 2020; 26: 364-373 DOI: 10.1038/s41591-020-0789-4. (PMID: 32152583)
  • 66 Bendavid I, Statlender L, Shvartser L. et al. A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19. Sci Rep 2022; 12: 10573
  • 67 Borel JC, Pelletier J, Taleux N. et al. Parameters recorded by software of non-invasive ventilators predict COPD exacerbation: a proof-of-concept study. Thorax 2015; 70: 284-285 DOI: 10.1136/thoraxjnl-2014-206569. (PMID: 25582449)
  • 68 Blouet S, Sutter J, Fresnel E. et al. Prediction of severe acute exacerbation using changes in breathing pattern of COPD patients on home noninvasive ventilation. Int J Chron Obstruct Pulmon Dis 2018; 13: 2577-2586 DOI: 10.2147/COPD.S170242. (PMID: 30214176)
  • 69 Hoet F, Libert W, Sanida C. et al. Telemonitoring in continuous positive airway pressure-treated patients improves delay to first intervention and early compliance: a randomized trial. Sleep Med 2017; 39: 77-83 DOI: 10.1016/j.sleep.2017.08.016. (PMID: 29157591)
  • 70 Mansell SK, Cutts S, Hackney I. et al. Using domiciliary non-invasive ventilator data downloads to inform clinical decision-making to optimise ventilation delivery and patient compliance. BMJ Open Respir Res 2018; 5: e000238 DOI: 10.1136/bmjresp-2017-000238. (PMID: 29531743)
  • 71 Woehrle H, Arzt M, Graml A. et al. Effect of a patient engagement tool on positive airway pressure adherence: analysis of a German healthcare provider database. Sleep Med 2018; 41: 20-26 DOI: 10.1016/j.sleep.2017.07.026. (PMID: 29425575)
  • 72 Hazenberg A, Kerstjens HA, Prins SC. et al. Initiation of home mechanical ventilation at home: a randomised controlled trial of efficacy, feasibility and costs. Respir Med 2014; 108: 1387-1395 DOI: 10.1016/j.rmed.2014.07.008. (PMID: 25081652)
  • 73 Jiang W, Chao Y, Wang X. et al. Day-to-Day Variability of Parameters Recorded by Home Noninvasive Positive Pressure Ventilation for Detection of Severe Acute Exacerbations in COPD. Int J Chron Obstruct Pulmon Dis 2021; 16: 727-737 DOI: 10.2147/COPD.S299819. (PMID: 33790549)
  • 74 Jeganathan V, Rautela L, Conti S. et al. Typical within and between person variability in non-invasive ventilator derived variables among clinically stable, long-term users. BMJ Open Respir Res 2021; 8: e000824