Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(20): 3142-3146
DOI: 10.1055/a-2359-8893
DOI: 10.1055/a-2359-8893
paper
Flow Chemistry
Efficient Flow Synthesis of Glycidyl Ether Using BuSnCl3 as a Mild Lewis Acid
We wish to thank the Japan Society for the Promotion of Science (JSPS) for funding through a Grant-in-Aid for Scientific Research (B) (No. 19H02722) and Scientific Research (C) (No. 24K08433).
Abstract
A ring-opening protocol of epichlorohydrin with 2-ethylhexanol was investigated for the synthesis of the corresponding chlorohydrin ether. BuSnCl3 proved to be an efficient mild Lewis acid catalyst, yielding the product with high selectivity. A scalable flow synthesis was achieved by modifying the flow setup. The flow synthesis of the corresponding glycidyl ether from the chlorohydrin ether was also carried out in an efficient manner by using the basic treatment.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2359-8893.
- Supporting Information
Publication History
Received: 13 April 2024
Accepted after revision: 03 July 2024
Accepted Manuscript online:
03 July 2024
Article published online:
24 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Singh GS, Mollet K, D’hooghe M, De Kimpe N. Chem. Rev. 2013; 113: 1441
- 1b Huber JE, Raushel J. In Encyclopedia of Reagents for Organic Synthesis [Online]. Epichlorohydrin. 2011
- 2a Matthes R, Frey H. Biomacromolecules 2022; 23: 2219
- 2b Matykiewicz D, Skorczewska K. Materials 2022; 15: 4824
- 2c Baek J, Kim M, Park Y, Kim B.-S. Macromol. Biosci. 2021; 21: 2100251
- 2d Caillol S, Boutevin B, Auvergne R. Polymer 2021; 223: 123663
- 2e Thomas A, Mueller SS, Frey H. Biomacromolecules 2014; 15: 1935
- 2f Urata K, Takaishi N. J. Am. Oil Chem. Soc. 1996; 73: 819
- 2g Urata K, Takahashi N. J. Am. Oil Chem. Soc. 1994; 71: 1027
- 3a Malburet S, Bertrand H, Richard C, Lacabanne C, Dantras E, Graillot A. RSC Adv. 2023; 13: 15099
- 3b Luo H, Yin Y, Wang Y, Li Q, Tang A, Liu Y. Int. J. Adhes. Adhes. 2022; 114: 103026
- 3c Luo J, Luo J, Zhang J, Bai Y, Gao Q, Li J, Li L. Polymers 2016; 8: 346
- 3d Morita Y. J. Appl. Polym. Sci. 2005; 97: 1395
- 4a Shi X.-L, Sun B, Hu Q, Chen Y, Duan P. Green Chem. 2019; 21: 3573
- 4b Moghadam M, Tangestaninejad S, Mirkhani V, Shaibani R. Tetrahedron 2004; 60: 6105
- 4c Tamura R, Fujimoto D, Lepp Z, Misaki K, Miura H, Takahasi H, Ushio T, Nakai T, Hirotsu K. J. Am. Chem. Soc. 2002; 124: 13139
- 4d Pederson RL, Liu KK.-C, Rutan JF, Chen L, Wong C.-H. J. Org. Chem. 1990; 55: 4897
- 4e Otera J, Niibo Y, Tsutsumi N, Nozaki H. J. Org. Chem. 1988; 53: 275
- 4f Nakatsuji Y, Nakamura T, Okahara M, Dishong DM, Gokel GW. J. Org. Chem. 1983; 48: 1237
- 4g Dishong DM, Diamond CJ, Cinoman MI, Gokel GW. J. Am. Chem. Soc. 1983; 105: 586
- 5a Funfuenha W, Punyodom W, Meepowpan P, Limwanich W. Polym. Bull. 2024; 81: 475
- 5b da Silva EP. S, Meneghetti SM. P. Mol. Catal. 2022; 528: 112499
- 5c da Silva DS, Altino FM. R. S, Bortoluzzi JH, Meneghetti SM. P. Mol. Catal. 2020; 494: 111130
- 5d Iwasaki S, Maki T, Onomura O, Nakashima W, Matsumura Y. J. Org. Chem. 2000; 65: 996
- 5e Chen X, McCarthy SP, Gross RA. Macromolecules 1997; 30: 3470
- 5f Kricheldorf HR, Mahler A. Polymer 1996; 37: 4383
- 5g Marton D, Slaviero P, Tagliavini G. Tetrahedron 1989; 45: 7099
- 6a Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
- 6b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 6c Kobayashi S. Chem. Asian J. 2016; 11: 425
- 6d Marcus M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020; 24: 1802
- 6e Fukuyama T, Kasakado T, Hyodo M, Ryu I. Photochem. Photobiol. Sci. 2022; 21: 761
- 6f Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2022; 122: 2752
- 6g Rodriguez-Zubiri M, Felpin F.-X. Org. Process Res. Dev. 2022; 26: 1766
- 6h Lin G, Qiu H. Chem. Eur. J. 2022; 28: e202200069
- 6i Del Vecchio A, Smallman HR, Morvan J, McBride T, Browne DL, Mauduit M. Angew. Chem. Int. Ed. 2022; 61: e202209564
- 6j Kanya N, Zsigmond TS, Hergert T, Lovei K, Dorman G, Kalman F, Darvas F. Org. Process Res. Dev. 2024; 28: 1288
- 6k Hayes HL. D, Mallia CJ. Org. Process Res. Dev. 2024; 28: 1327
- 6l Laporte AA. H, Masson TM, Zondag SD. A, Noël T. Angew. Chem. Int. Ed. 2024; 6: e202316108
- 6m Fukuyama T, Dakegata A, Ryu I. ARKIVOC 2024; (ii): 202312077
- 7a Watanabe H, Takemoto M, Adachi K, Okuda Y, Dakegata A, Fukuyama T, Ryu I, Wakamatsu K, Orita A. Chem. Lett. 2020; 49: 409
- 7b Kasakado T, Hyodo M, Furuta A, Kamardine A, Ryu I, Fukuyama T. J. Chin. Chem. Soc. 2020; 67: 2253
- 7c Kasakado T, Hirobe Y, Furuta A, Hyodo M, Fukuyama T, Ryu I. Molecules 2021; 26 Article No. 5845
- 7d Hyodo M, Iwano H, Kasakado T, Fukuyama T, Ryu I. Micromachines 2021; 12: 1307
- 7e Kasakado T, Fukuyama T, Nakagawa T, Taguchi S, Ryu I. Beilstein J. Org. Chem. 2022; 18: 152
- 7f Takabayashi R, Feser S, Yonehara H, Ryu I, Fukuyama T. Polym. Chem. 2023; 14: 4515
- 7g Shih Y.-L, Wu Y.-K, Hyodo M, Ryu I. J. Org. Chem. 2023; 88: 6548
For selected reviews, see:
For selected examples, see:
For selected reports on BuSnCl3-catalyzed reactions, see:
For selected reviews, see:
For our recent reports, see: