Subscribe to RSS
DOI: 10.1055/a-2369-3961
Mild and Stereoselective Synthesis of (1E,3E)-Dienes through Silver(I)-Catalyzed β-Hydride Migration from Allylic α-Diazo Esters
We are grateful to the Brazilian governmental agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and FAPESC (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina) for the research grants and fellowships. Support from INCT-Catálise/FAPESC/CNPq/CAPES is also gratefully acknowledged.
Abstract
A mild procedure for the diastereoselective preparation of functionalized 1,3-dienes and their synthetic versatility are described herein. The silver-catalyzed decomposition of α-diazo-γ,δ-unsaturated esters through β-hydride migration at room temperature resulted in the stereoselective formation of 12 conjugated (1E,3E)-dienes. Further synthetic post-modifications included intramolecular Heck reaction and hydrogenation, leading to a novel substituted indene and an aliphatic diester, respectively. To rationalize the observed reaction outcome, a computational investigation of the mechanisms was conducted, emphasizing the importance of factors such as metallocarbenoid stability, substituent effects, and microkinetics simulations to better understand the reaction intricacies.
Key words
α-diazo carbonyl compounds - silver-catalyzed reaction - β-hydride migration - 1,3-dienes - stereoselective catalysis - computational methodsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2369-3961.
- Supporting Information
Publication History
Received: 18 June 2024
Accepted after revision: 18 July 2024
Accepted Manuscript online:
18 July 2024
Article published online:
13 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Harned AM, Volp KA. Nat. Prod. Rep. 2011; 28: 1790
- 1b Mevers E, Saurí J, Liu Y, Moser A, Ramadhar TR, Varlan M, Williamson RT, Martin GE, Clardy J. J. Am. Chem. Soc. 2016; 138: 12324
- 2a Wnuk SF, Ro B.-O, Valdez CA, Lewandowska E, Valdez NX, Sacasa PR, Yin D, Zhang J, Borchardt RT, De Clercq E. J. Med. Chem. 2002; 45: 2651
- 2b Oliveira AS, Meier L, Zapp E, Brondani D, Brighente IM. C, Sá MM. J. Braz. Chem. Soc. 2019; 30: 1045
- 3a Kitamura T, Tanaka N, Mihashi A, Matsumoto A. Macromolecules 2010; 43: 1800
- 3b Valente A, Mortreux A, Visseaux M, Zinck P. Chem. Rev. 2013; 113: 3836
- 4a Reymond S, Cossy J. Chem. Rev. 2008; 108: 5359
- 4b Schwartz BD, Denton JR, Lian Y, Davies HM. L, Williams CM. J. Am. Chem. Soc. 2009; 131: 8329
- 4c Liao L, Jana R, Urkalan KB, Sigman MS. J. Am. Chem. Soc. 2011; 133: 5784
- 4d Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
- 4e Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
- 5a Paolis MD, Chataigner I, Maddaluno J. Top. Curr. Chem. 2012; 327: 87
- 5b Soengas RG, Rodríguez-Solla H. Molecules 2021; 26: 249
- 6a Crist RM, Reddy PV, Borhan B. Tetrahedron Lett. 2001; 42: 619
- 6b Muthiah C, Kumar KS, Vittal JJ, Swamy KC. K. Synlett 2002; 24: 1787
- 6c Palmelund A, Myers EL, Tai LR, Tisserand S, Butts CP, Aggarwal VK. Chem. Commun. 2007; 4128
- 6d Lee CG, Lee KY, Kim SJ, Kim JN. Bull. Korean Chem. Soc. 2007; 28: 719
- 6e Zhou R, Wang C, Song H, He Z. Org. Lett. 2010; 12: 976
- 6f Sá MM, Meier L. Heteroat. Chem. 2013; 24: 384
- 6g Lim CH, Kim SH, Park KH, Lee J, Kim JN. Tetrahedron Lett. 2013; 54: 387
- 6h Xie P, Fu W, Wu Y, Cai X, Sun Z, Li S, Gao C, Yang X, Loh T.-P. Org. Lett. 2019; 21: 4168
- 7 Xiao Q, Wang B, Tian L, Yang Y, Ma J, Zhang Y, Chen S, Wang J. Angew. Chem. Int. Ed. 2013; 52: 9305
- 8a Khan HA, Wotsa V, Lavanya J, Sivasankar C. New J. Chem. 2022; 46: 19940
- 8b Wang K, Chen S, Zhang H, Xu S, Ye F, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 3809
- 9 Russo TV. C, Sá MM. Eur. J. Org. Chem. 2021; 4174
- 11a Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 11b Allouche EM. D, Charette AB. Synthesis 2019; 51: 3947
- 11c Damiano C, Sonzini P, Gallo E. Chem. Soc. Rev. 2020; 49: 4867
- 11d Carreras V, Tanbouza N, Ollevier T. Synthesis 2021; 53: 79
- 11e Zhukovsky D, Dar’in D, Bakulina O, Krasavin M. Molecules 2022; 27: 2030
- 12a Padwa A, Austin DJ, Hornbuckle SF, Semones MA. J. Am. Chem. Soc. 1992; 114: 1874
- 12b Taber DF, Hennessy MJ, Louey JP. J. Org. Chem. 1992; 57: 436
- 13a Bera S, Jana S, Samanta R. Synthesis 2024; 56: 29
- 13b Sailer JK, Sharland JC, Bacsa J, Harris CF, Berry JF, Musaev DG, Davies HM. L. Organometallics 2023; 42: 2122
- 14 Bi X, Li C.-J. ChemCatChem 2021; 13: 3200
- 15 Zhang X, Liu Z, Sivaguru P, Bi X. Chem Catal. 2021; 1: 599
- 16 Sivaguru P, Cao S, Babu KR, Bi X. Acc. Chem. Res. 2020; 53: 662
- 17a Danheiser RL, Miller RF, Brisbois RG, Park SZ. J. Org. Chem. 1990; 55: 1959
- 17b Taber DF, You KK, Rheingold AL. J. Am. Chem. Soc. 1996; 118: 547
- 18a Ferreira M, Fernandes L, Sá MM. J. Braz. Chem. Soc. 2009; 20: 564
- 18b Ferreira M, Sá MM. Adv. Synth. Catal. 2015; 357: 829
- 19a Thanh NP. T, Tone M, Inoue H, Fujisawa I, Iwasa S. Chem. Commun. 2019; 55: 13398
- 19b Hoshi T, Ota E, Inokuma Y, Yamaguchi J. Org. Lett. 2019; 21: 10081
- 20 Paul D, Das S, Saha S, Sharma H, Goswami RK. Eur. J. Org. Chem. 2021; 2057
- 21 Lee KY, Gowrisankar S, Lee YJ, Kim JN. Tetrahedron 2006; 62: 8798
- 23 Qi X, Lan Y. Acc. Chem. Res. 2021; 54: 2905
- 24 Li Z, Gao H.-X. Org. Biomol. Chem. 2012; 10: 6294
- 25a Motagamwala AH, Dumesic JA. Chem. Rev. 2021; 121: 1049
- 25b Besora M, Maseras F. WIREs Comput. Mol. Sci. 2018; 8: e1372
- 26 Schneider FS. S, Caramori GF. J. Comp. Chem. 2023; 44: 209
- 27a Becke AD. Phys. Rev. 1988; 38: 3098
- 27b Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
- 27c Van Wüllen C. J. Chem. Phys. 1998; 109: 392
- 27d Hellweg A, Rappoport D. Phys. Chem. Chem. Phys. 2015; 17: 1010
- 28 Neese F. WIREs Comput. Mol. Sci. 2022; 12: e1606
- 29 Rolfes JD, Neese F, Pantazis DA. J. Comput. Chem. 2020; 41: 1842
- 30a Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
- 30b Klamt A, Schürmann G. J. Chem. Soc., Perkin Trans. 2 1993; 799
- 31 Fukui K. J. Phys. Chem. 1970; 74: 4161
- 32 Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2011; 115: 14556
- 33a Grimme S. Chem. Eur. J. 2012; 18: 9955
- 33b Chai J.-D, Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
- 34a Eyring H. J. Chem. Phys. 1935; 3: 107
- 34b Evans MG, Polanyi M. Trans. Faraday Soc. 1935; 31: 875
- 35 Wigner E. Phys. Rev. 1932; 40: 749
- 36 Eckart C. Phys. Rev. 1930; 35: 1303
- 37 Petzold L. SIAM J. Sci. Stat. Comput. 1983; 4: 136