Synthesis
DOI: 10.1055/a-2405-2961
short review
Boryl Radical Chemistry

Recent Advances in Photoinduced Borylation via N-Heterocyclic Carbene Boryl Radicals

Xu Chen
,
Xuesi Zhou
,
Jiawei He
,
Xiang Liu
This work was supported by a Start-up Grant from Guangdong Pharmaceutical University (Grant No. 51304043005).


Abstract

Organoboron compounds are recognized as essential synthetic intermediates in organic chemistry and have found broad applications in pharmaceutical and materials science. In recent years, the development of novel boronating reagents has opened new avenues for the synthesis of organoboron compounds. Among these, N-heterocyclic carbene boranes (NHC-boranes), with their unique advantages, have garnered sustained interest and have evolved into important precursors for boron-centered radicals, participating in a diverse array of visible-light-induced borylation reactions. This short review primarily focuses on visible-light-induced radical borylation reactions involving NHC-boranes, summarizing the latest advancements in the field and offering inspiration for subsequent research.

1 Introduction

2 Photoinduced Borylation via NHC-Boryl Radicals

2.1 Photoinduced Borylation of Polyfluoroarenes

2.2 Photoinduced Borylation of Arenes

2.3 Photoinduced Borylation of Alkenes

2.4 Photoinduced Borylation of Alkynes

2.5 Photoinduced Borylation of Other Substrates

3 Conclusion and Future Prospects



Publication History

Received: 23 June 2024

Accepted after revision: 28 August 2024

Accepted Manuscript online:
28 August 2024

Article published online:
30 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 1b Fyfe JW, Watson AJ. Chem 2017; 3: 31
    • 1c Neeve EC, Geier SJ, Mkhalid IA, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 1d Cuenca AB, Shishido R, Ito H, Fernandez E. Chem. Soc. Rev. 2017; 46: 415
    • 1e Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 2a Kim JH, Constantin T, Simonetti M, Llaveria J, Sheikh NS, Leonori D. Nature 2021; 595: 677
    • 2b Yang L, Semba K, Nakao Y. Angew. Chem. Int. Ed. 2017; 56: 4853
    • 2c Yang L, Uemura N, Nakao Y. J. Am. Chem. Soc. 2019; 141: 7972
    • 2d Trouve J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Angew. Chem. Int. Ed. 2021; 60: 18006
    • 3a Takahashi K, Geib SJ, Maeda K, Curran DP, Taniguchi T. Org. Lett. 2021; 23: 1071
    • 3b Jin J.-K, Zhang F.-L, Zhao Q, Lu J.-A, Wang Y.-F. Org. Lett. 2018; 20: 7558
    • 3c Huang Y.-S, Wang J, Zheng W.-X, Zhang F.-L, Yu Y.-J, Zheng M, Zhou X, Wang Y.-F. Chem. Commun. 2019; 55: 11904
    • 3d Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Angew. Chem. Int. Ed. 2018; 130: 9629
    • 3e Li G, Huang G, Sun R, Curran D, Dai W. Org. Lett. 2021; 23: 4353
    • 3f Liu Y, Li J.-L, Liu X.-G, Wu J.-Q, Huang Z.-S, Li Q, Wang H. Org. Lett. 2021; 23: 1891
    • 3g Liu X, Lin EE, Chen G, Li J.-L, Liu P, Wang H. Org. Lett. 2019; 21: 8454
    • 3h Wang K, Zhuang Z, Tia H, Wu P, Zhao X, Wang H. Chin. Chem. Lett. 2020; 31: 1564
    • 4a Ye T, Zhang F.-L, Xia H.-M, Zhou X, Yu Z.-X, Wang Y.-F. Nat. Commun. 2022; 13: 426
    • 4b Jian Y, Wen F, Shang J, Li X, Liu Z, An Y, Wang Y. Org. Chem. Front. 2024; 11: 149
    • 4c Pan Q.-J, Miao Y.-Q, Cao H.-J, Liu Z, Chen X. J. Org. Chem. 2024; 89: 5049
    • 5a Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 5b Liu Q, Wu L.-Z. Nat. Sci. Rev. 2017; 4: 359
    • 5c Chen B, Wu L.-Z, Tung C.-H. Acc. Chem. Res. 2018; 51: 2512
    • 5d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 5e Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506

      Selected reviews:
    • 6a Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai H, Seath AC. P, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 6b Wang C.-S, Dixneuf PH, Soulé JF. Chem. Rev. 2018; 118: 7532
    • 6c Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
    • 6d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 7a Taniguchi T. Chem. Soc. Rev. 2021; 50: 8995
    • 7b Peng T.-Y, Zhang F.-L, Wang Y.-F. Acc. Chem. Res. 2023; 56: 169
    • 7c Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 7d Taniguchi T. Eur. J. Org. Chem. 2019; 6308
  • 8 Xia P.-J, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Chen K, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2020; 22: 1742
  • 9 Xu W, Jiang H, Leng J, Ong H.-W, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
  • 10 Miao Y.-Q, Pan Q.-J, Kang J.-X, Dai X, Liu Z, Chen X. Org. Chem. Front. 2024; 11: 1462
  • 11 Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2020; 142: 6261
    • 12a Starrett J, Montzka T, Crosswell A, Cavanagh R. J. Med. Chem. 1989; 32: 2204
    • 12b Quattrini L, Gelardi EL. M, Coviello V, Sartini SD, Ferraris M, Mori M, Nakano I, Garavaglia S, La Motta C. J. Med. Chem. 2020; 63: 4603
    • 12c Al-Tel TH, Al-Qawasmeh RA, Zaarour R. Eur. J. Med. Chem. 2011; 46: 1874
    • 13a Wang Y, Zheng H, Xu J, Zhuang C, Liu X, Cao H. Org. Chem. Front. 2021; 8: 4706
    • 13b Liu X, Wang Y, Song D, Wang Y, Cao H. Chem. Commun. 2020; 56: 15325
    • 13c Shi X, Wang Q, Tang Z, Huang H, Cao T, Cao H, Liu X. Org. Lett. 2024; 26: 1255
    • 13d Zhu B, Li W, Chen H, Wu M, Hu J, Cao H, Liu X. Adv. Synth. Catal. 2022; 364: 2911
    • 13e Li W, Zhang M, Yan J, Ni L, Cao H, Liu X. Org. Chem. Front. 2022; 9: 2529
  • 14 Zheng H, Lu H, Su C, Yang R, Zhao L, Liu X, Cao H. Chin. J. Chem. 2023; 41: 193
    • 15a Song D, Huang C, Liang P, Zhu B, Liu X, Cao H. Org. Chem. Front. 2021; 8: 2583
    • 15b Zhou J, Shi X, Zheng H, Chen G, Zhang C, Liu X, Cao H. Org. Lett. 2022; 24: 3238
    • 15c Liu X, Song D, Zhang Z, Lin J, Zhuang C, Zhan H, Cao H. Org. Biomol. Chem. 2021; 19: 5284
    • 15d Liu X, Zhou J, Zheng H, Liu J, Liu Z, Ni L, Kong X, Zhang C, Cao H. Chin. J. Chem. 2023; 41: 924
    • 15e Yan J, Zhong S, Chen X, Luo Y, Cao H, Liu X, Zhao L. J. Org. Chem. 2024; 89: 4840
    • 15f Liu X, Shi X, Zhou J, Huang C, Lin Y, Zhang C, Cao H. Chem. Commun. 2023; 59: 4051
  • 16 Zheng H, Xiong H, Su C, Cao H, Yao H, Liu X. RSC Adv. 2022; 12: 470

    • Selected examples:
    • 17a Wang JZ, Mao E, Nguyen JA, Lyon WL, MacMillan DW. C. J. Am. Chem. Soc. 2024; 146: 15693
    • 17b Boyington AJ, Riu ML. Y, Jui NT. J. Am. Chem. Soc. 2017; 139: 6582
    • 17c Hari DP, Hering T, Konig B. Angew. Chem. Int. Ed. 2014; 53: 725
    • 17d Bunescu A, Abdelhamid Y, Gaunt MJ. Nature 2021; 598: 597
    • 17e Cai Y, Chatterjee S, Ritter T. J. Am. Chem. Soc. 2023; 145: 13542
    • 17f Lu B, Zhang Z, Jiang M, Liang D, He Z.-W, Bao F.-S, Xiao W.-J, Chen J.-R. Angew. Chem. Int. Ed. 2023; 62: e202309460
  • 18 Xia P.-J, Song D, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
  • 19 Zhu C, Dong J, Liu X, Gao L, Zhao Y, Xie J, Li S, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 12817
  • 20 Miao Y.-Q, Li X.-Y, Pan Q.-J, Ma Y, Kang J.-X, Ma Y.-N, Liu Z, Chen X. Green Chem. 2022; 24: 7113
  • 21 Wu X, Wang Y, Zhou M.-X, Chen Z, Peng X, Wang Z, Zeng Y.-F. Adv. Synth. Catal. 2023; 365: 3824
  • 22 Xie F, Mao Z, Curran DP, Liang H, Dai W. Angew. Chem. Int. Ed. 2023; 62: e202306846
  • 23 Miao Y.-Q, Pan Q.-J, Liu Z, Chen X. New J. Chem. 2022; 46: 19091
  • 24 Zhu C, Yao S, Xie J. Synthesis 2024; 56: 1711
  • 25 Li D.-C, Zeng J.-H, Yang Y.-H, Zhan Z.-P. Org. Chem. Front. 2023; 10: 2075
  • 26 Chen Z.-L, Empel C, Wang K, Wu P.-P, Cai B.-G, Li L, Koenigs RM, Xuan J. Org. Lett. 2022; 24: 2232
  • 27 Xie Y, Zhang R, Chen Z.-L, Rong M, He H, Ni S, He X.-K, Xiao W.-J, Xuan J. Adv. Sci. 2024; 11: 2306728
  • 28 Zhou N, Yuan X.-A, Zhao Y, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 3990
  • 29 Kawamoto T, Morioka T, Noguchi K, Curran DP, Kamimura A. Org. Lett. 2021; 23: 1825