Subscribe to RSS
DOI: 10.1055/a-2444-0067
Asymmetric Synthesis of 3,3′-Pyrrolidonyl Spirooxindole-5′-Carboxylic Ester from l-Tryptophan
This work was supported by Ministry of Earth Sciences, New Delhi (MoES/09-DS/12/2015 PC-IV) and and CBMR-IMR grant (CBMR/IMR/0002/2021).
Dedicated to Professor H. Ila on her 80th birthday
Abstract
A highly efficient, multi-gram scale asymmetric synthesis of 3,3′-pyrrolidonyl spirooxindole-5′-carboxylic ester, which could be a potential precursor for the synthesis of cyanogramide, is accomplished from commercially available l-1-methyltryptophan in two pots. Fluoride-promoted desilylative spiro-cyclization of (semi) in situ generated isocyanate derived from l-1-methyltryptophan is the key reaction. Further, a variety of arene-substituted 3,3′-pyrrolidonyl spirooxindole-5′-carboxylxic acid esters were synthesized by late stage functionalization of easily accessible 3,3′-pyrrolidonyl spirooxindole-5′-carboxylic ester.
Key words
spirooxindole - asymmetric synthesis - fluoride-promoted - desilylative - spirocyclization - tryptophan - cyanogramide - 3,3′-pyrrolidonyl spirooxindoleSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2444-0067.
- Supporting Information
Publication History
Received: 17 August 2024
Accepted after revision: 16 October 2024
Accepted Manuscript online:
16 October 2024
Article published online:
12 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Department of Chemistry, The University of Utah, Salt Lake City, UT 84112, USA.
- 2 Department of Pharmaceutical Sciences, University of Kentucky, KY 40536, USA.
- 3a Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discov. Devel. 2010; 13: 758
- 3b Zhou F, Liu YL, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 3c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 3d Trost BM, Brennan MK. Synthesis 2009; 3003
- 3e Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 4a Edmondson S, Danishefsky SJ, Sepp-Lorenzino L, Rosen N. J. Am. Chem. Soc. 1999; 121: 2147
- 4b Meyers C, Carreira EM. Angew. Chem. Int. Ed. 2003; 42: 694
- 4c Mukaiyama T, Ogata K, Sato I, Hayashi Y. Chem. Eur. J. 2014; 20: 13583 ; and references cited therein
- 5a Trost BM, Brennan MK. Org. Lett. 2006; 8: 2027
- 5b Cochard F, Laronze M, Prost E, Nuzillard J.-M, Augé F, Petermann C, Sigaut P, Sapi J, Laronze J.-Y. Eur. J. Org. Chem. 2002; 3481
- 5c Allous I, Comesse S, Berkeš D, Alkyat A, Daïch A. Tetrahedron Lett. 2009; 50: 4411
- 5d Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
- 6a Lo MM.-C, Neumann CS, Nagayama S, Perlstein EO, Schreiber SL. J. Am. Chem. Soc. 2004; 126: 16077
- 6b Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S. J. Med. Chem. 2006; 49: 3432
- 6c Antonchick AP, Gerding-Reimers C, Catarinella M, Schürmann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat. Chem. 2010; 2: 735
- 6d Zhao Y, Liu L, Sun W, Lu J, Mc Eachern D, Li X, Yu S, Bernard D, Ochsenbein P, Ferey V, Carry J-C, Deschamps JR, Sun D, Wang S. J. Am. Chem. Soc. 2013; 135: 7223
- 7a Fu P, Kong F, Li X, Wang Y, Zhu W. Org. Lett. 2014; 16: 3708
- 7b Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Angew. Chem. Int. Ed. 2020; 59: 14065
- 8a Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Angew. Chem. Int. Ed. 2011; 50: 9124
- 8b Sen S, Potti VR, Surakanti R, Murthy YL. N, Pallepogu R. Org. Biomol. Chem. 2011; 9: 358
- 8c Cowley AR, Hill TJ, Kocis P, Moloney MG, Stevenson RD, Thompson AL. Org. Biomol. Chem. 2011; 9: 7042
- 8d Zhou Y, Xi Y, Zhao J, Sheng X, Zhang S, Zhang H. Org. Lett. 2012; 14: 3116
- 8e Hirschhäuser C, Parker JS, Perry MW. D, Haddow MF, Gallagher T. Org. Lett. 2012; 14: 4846
- 8f Meloche JL, Ashfeld BL. Angew. Chem. Int. Ed. 2017; 56: 6604
- 8g Zaytsev SV, Ivanov KL, Skvortsov DA, Bezzubov SI, Melnikov MY, Budynina EM. J. Org. Chem. 2018; 83: 8695
- 9 Monecke M, Lindel T. Org. Lett. 2018; 20: 7969
- 10 Hajra S, Bhosale SS, Hazra A, Kanaujia N. Org. Biomol. Chem. 2019; 17: 8140
- 11a Hajra S, Roy SS, Aziz SM, Das D. Org. Lett. 2017; 19: 4082
- 11b Hajra S, Roy SS, Biswas A, Saleh SA. J. Org. Chem. 2018; 83: 3633
- 11c Hajra S, Hazra A, Mandal P. Org. Lett. 2018; 20: 6471
- 11d Hajra S, Saleh SA, Hazra A, Singh MS. J. Org. Chem. 2019; 84: 8194
- 11e Hajra S, Hazra A, Saleh SA. J. Org. Chem. 2019; 84: 10412
- 11f Hajra S, Roy S. Org. Lett. 2020; 22: 1458
- 11g Hajra S, Roy S, Mondal AS. Adv. Synth. Catal. 2020; 362: 5475
- 11h Saleh SA, Hazra A, Singh MS, Hajra S. J. Org. Chem. 2022; 87: 8656
- 11i Hajra S, Biswas A. Org. Lett. 2020; 22: 4990
- 11j Biswas A, Hajra S. Adv. Synth. Catal. 2022; 364: 3035
- 12a Hajra S, Bhosale SS, Hazra A. Org. Biomol. Chem. 2017; 15: 9217
- 12b Hajra S, Jana B. Org. Lett. 2017; 19: 4778
- 12c Hajra S, Laskar S, Jana B. Chem. Eur. J. 2019; 25: 1
- 13a Larson GL. Recent Synthetic Applications of Organosilanes. In The Chemistry of Organic Silicon Compounds. Rappoport Z, Patai S. Wiley; Chichester, UK: 1989: 763-808
- 13b Bassindale AR, Glynn SJ, Taylor PG. Reaction Mechanisms of Nucleophilic Attack at Silicon . In The Chemistry of Organic Silicon Compounds . Rappoport Z, Apeloig Y. Wiley; Chichester: 1998: 495-512
- 13c Damrauer R, Crowell AJ, Craig CF. J. Am. Chem. Soc. 2003; 125: 10759
- 13d Krouse IH, Wenthold PG. J. Am. Soc. Mass Spectrom. 2005; 16: 697
- 14a Chuit C, Corriu RJ. P, Reye C. J. Organomet. Chem. 1988; 358: 57
- 14b Denmark SE, Lee W. J. Org. Chem. 1994; 59: 707
- 15 CCDC 1944040 (7a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 16 Mitra P, Eckenrode JM, Mandal A, Jha AK, Salem SM, Leggas M, Rohr J. J. Med. Chem. 2018; 61: 8001
For recent reviews, see: