Synlett
DOI: 10.1055/a-2447-4273
letter

Silyl Ethers as Latent Pronucleophiles in Enantioselective Lewis Base Catalyzed Synthesis of Allylic Ethers from Allylic Fluorides

Markus Lange
,
Abdulrahman Barakat
,
This work was a part of a German Science Foundation (DFG)-funded project, number 445755502. The State of Thuringia (fellowship to M.L.) is gratefully acknowledged. Support by the Thüringer Aufbaubank through project NMR-ESU (2022 FGI 0015) is also gratefully acknowledged.


Abstract

Allylic ethers are a common occurrence in natural products, and are often used as intermediates in target-oriented synthesis. Their synthesis often relies on the use of transition-metal catalysts. Here, we report an organocatalytic method for the allylation of O-centered nucleophiles, the Lewis base catalyzed allylation of silyl ethers with allylic fluorides. The method relies on the concept of latent pronucleophiles in Lewis base catalysis to overcome common limitations in substrate scope, even permitting the allylation of sterically congested O-pronucleophiles. When chiral Lewis base catalysts are used, the allyl ethers are produced in an enantioenriched form through kinetic resolution of fluorides, where the stereoselectivity is determined by the chiral catalyst.

Supporting Information



Publication History

Received: 05 September 2024

Accepted after revision: 22 October 2024

Accepted Manuscript online:
22 October 2024

Article published online:
05 November 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barluenga S, Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
    • 2a Patel HH, Prater MB, Squire SO. Jr, Sigman MS. J. Am. Chem. Soc. 2018; 140: 5895
    • 2b Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 4545
    • 2c Trost BM, Machacek MR, Tsui HC. J. Am. Chem. Soc. 2005; 127: 7014
    • 2d Uozumi Y, Kimura M. Tetrahedron: Asymmetry 2006; 17: 161
    • 3a Stanley LM, Bai C, Ueda M, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 8918
    • 3b Shekhar S, Trantow B, Leitner A, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 11770
    • 3c Kim D, Reddy S, Singh OV, Lee JS, Kong SB, Han H. Org. Lett. 2013; 15: 512
    • 4a Li C, Breit B. Chem. Eur. J. 2016; 22: 14655
    • 4b Evans PA, Leahy DK. J. Am. Chem. Soc. 2000; 122: 5012
    • 5a Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
    • 5b Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
    • 5c Parisotto S, Deagostino A. Synthesis 2019; 51: 1892
    • 5d Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
    • 6a Lawson DN, Osborn JA, Wilkinson G. J. Chem. Soc. A 1966; 1733
    • 6b Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581
    • 6c Lautens M, Fagnou K. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5455
    • 6d Vivek Kumar S, Yen A, Lautens M, Guiry PJ. Chem. Soc. Rev. 2021; 50: 3013
    • 7a Madrahimov ST, Li Q, Sharma A, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 14968
    • 7b Dubovyk I, Watson ID. G, Yudin AK. J. Org. Chem. 2013; 78: 1559
    • 8a Rössler SL, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
    • 8b Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
    • 10a Cho C.-W, Kong J.-R, Krische MJ. Org. Lett. 2004; 6: 1337
    • 10b Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
    • 10c Du Y, Han X, Lu X. Tetrahedron Lett. 2004; 45: 4967
  • 11 Basavaiah D, Kumaragurubaran N, Sharada DS, Reddy RM. Tetrahedron 2001; 57: 8167
    • 12a Kim JN, Lee HJ, Gong JH. Tetrahedron Lett. 2002; 43: 9141
    • 12b Zhao S, Jin L, Chen Z.-L, Rui X, He J.-Y, Xia R, Chen K, Chen X.-X, Yin Z.-J, Chen X. RSC Adv. 2019; 9: 11585
  • 13 Zi Y, Lange M, Schultz C, Vilotijevic I. Angew. Chem. Int. Ed. 2019; 58: 10727
    • 14a Lange M, Meyer FL, Nosovska O, Vilotijevic I. Org. Lett. 2023; 25: 9097
    • 14b Kumar S, Lange M, Zi Y, Görls H, Vilotijevic I. Chem. Eur. J. 2023; 29: e202300641
    • 14c Zi Y, Lange M, Vilotijevic I. Chem. Commun. 2020; 56: 5689
    • 14d Lange M, Zi Y, Vilotijevic I. Synlett 2020; 31: 1237
    • 14e Lange M, Zi Y, Vilotijevic I. J. Org. Chem. 2020; 85: 1259
    • 15a Sumii Y, Nagasaka T, Wang J, Uno H, Shibata N. J. Org. Chem. 2020; 85: 15699
    • 15b Nishimine T, Taira H, Mori S, Matsubara O, Tokunaga E, Akiyama H, Soloshonok VA, Shibata N. Chem. Commun. 2017; 53: 1128
    • 15c Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 6744
    • 15d Nishimine T, Taira H, Tokunaga E, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2015; 55: 359
    • 15e Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2013; 53: 517
    • 15f Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2014; 53: 517
  • 16 Duran J, Mateos J, Moyano A, Companyó X. Chem. Sci. 2023; 14: 7147
  • 17 This observation is in agreement with previous reports,14 and is probably a consequence of a competing elimination process.
    • 18a Nosovska O, Liebing P, Vilotijevic I. Chem. Eur. J. 2024; 30: e202304014
    • 18b Zi Y, Lange M, Schüler P, Krieck S, Westerhausen M, Vilotijevic I. Synlett 2020; 31: 575
    • 18c Formánek B, Šimek M, Kamlar M, Císařová I, Veselý J. Synthesis 2019; 51: 907
    • 18d Dočekal V, Šimek M, Dračínský M, Veselý J. Chem. Eur. J. 2018; 24: 13441
    • 18e Kamlar M, Císařová I, Hybelbauerová S, Veselý J. Eur. J. Org. Chem. 2017; 2017: 1926
  • 19 van Steenis DJ. V. C, Marcelli T, Lutz M, Spek AL, van Maarseveen JH, Hiemstra H. Adv. Synth. Catal. 2007; 349: 281
    • 20a Allylic Substitution; General ProcedureThe appropriate latent pronucleophile 2 (1.3 equiv) and DABCO (10 mol%) were dissolved in anhyd CH2Cl2 (0.25 M). A solution of the appropriate MBH fluoride 1 (1.0 equiv) in anhyd CH2Cl2 (0.25 M) was added, and the resulting mixture was stirred at r.t. under an inert atmosphere until the reaction was complete (TLC). The mixture was then concentrated, and the residue was purified by column chromatography (silica gel, EtOAc–PE).Methyl 2-[(2-Naphthylmethoxy)(phenyl)methyl]acrylate (3a)Colorless solid; yield: 29.3 mg (0.088 mmol, 87%). IR (ATR):3012, 2889, 1256, 1432, 1157, 1099, 1029, 725, 642 cm–1. 1H NMR (250 MHz, CDCl3): δ = 7.78–7.92 (m, 4 H), 7.28–7.55, (m, 8 H), 6.43 (s, 1 H), 6.12 (t, J = 1.37 Hz, 1 H), 5.45 (s, 1 H), 4.69 (s, 2 H), 3.73 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 166.33, 141.30, 139.60, 135.65, 133.30, 133.02, 128.44, 128.12, 128.03, 127.92, 127.82, 127.72, 126.44, 126.09, 125.87, 125.85, 125.35, 78.62, 70.96, 51.84. HRMS (ESI): m/z [M + Na]+ calcd for C22H20NaO3: 355.1310; found: 355.1301.
  • 21 Enantioselective Allylic Substitution; General ProcedureThe appropriate MBH fluoride 1 (1 equiv) was added to a solution of the appropriate latent pronucleophile 2 (2 equiv) and (DHQD)2PHAL (10–20 mol%) in anhyd 1,4-dioxane (0.2 M), and the mixture was stirred under argon at r.t. until the reaction was complete (TLC). The crude mixture was directly purified by column chromatography (silica gel, EtOAc–PE).Methyl 2-[[(4-Cyanobenzyl)oxy](phenyl)methyl]acrylate (3i′)Colorless oil; yield: 22.4 mg (0.073 mmol, 73%, er 96:4). HPLC [Phenomenex Lux Cellulose-1, hexane–EtOH (95:5), 0.7 mL/min, 25 °C, λ = 220 nm]: t maj = 13.45 min; t min = 16.87 min.