Subscribe to RSS
DOI: 10.1055/a-2683-8162
Erythropoietin Modulates IL-1β-Induced Chondrocyte Stress in a High-Glucose Environment in a Human Chondrocyte Cell Line
Erythropoietin als Modulator von Chondrozyten-Stress durch hohe Glukosekonzentrationen in einer humanen Chondrozyten-ZelllinieAuthors
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease marked by cartilage degradation, pain, and impaired mobility. With rising rates of metabolic disorders such as type 2 diabetes, OA is increasingly linked to hyperglycemia. High glucose levels are known to impair chondrocyte function, accelerating cartilage breakdown and OA progression. This study investigates the potential protective role of erythropoietin (EPO) against IL-1β-induced stress in human chondrocytes under high-glucose conditions. We evaluated EPO’s effects on cell viability, oxidative stress, glucose metabolism, inflammatory mediators, and apoptosis. Human C28/I2 chondrocytes were cultured in high-glucose media and stimulated with IL-1β, with or without EPO treatment. Cell viability was assessed using the MTT assay. Oxidative stress and metabolic changes were evaluated via ROS production and glucose uptake assays. Inflammatory cytokine expression (IL-6, TNF-α) and apoptosis (TUNEL staining) were also measured. IL-1β significantly reduced cell viability, increased ROS production and glucose uptake, upregulated IL-6 and TNF-α expression, and induced apoptosis. EPO treatment effectively counteracted these effects in a dose-dependent manner, improving viability, reducing oxidative stress, normalizing glucose uptake, and decreasing inflammatory and apoptotic markers. These findings indicate that EPO mitigates IL-1β-induced chondrocyte stress in hyperglycemic conditions through modulation of oxidative, metabolic, and inflammatory pathways. EPO may offer a novel therapeutic approach for managing OA in diabetic or high-glucose-associated contexts.
Zusammenfassung
Die Arthrose ist eine weit verbreitete degenerative Gelenkerkrankung, die durch den Abbau von Knorpelgewebe, Schmerzen und eingeschränkte Mobilität gekennzeichnet ist. Mit der Zunahme metabolischer Erkrankungen wie Typ-2-Diabetes wird Arthrose zunehmend mit Hyperglykämie in Verbindung gebracht. Erhöhte Glukosespiegel beeinträchtigen die Funktion von Chondrozyten, fördern den Knorpelabbau und beschleunigen das Fortschreiten der Erkrankung. Ziel dieser Studie war es, die potenziell schützende Rolle von Erythropoetin (EPO) gegenüber IL-1β-induziertem Stress in humanen Chondrozyten unter hohen Glukosekonzentrationen zu untersuchen. Dabei wurden die Auswirkungen von EPO auf Zellviabilität, oxidativen Stress, Glukosestoffwechsel, Entzündungsmediatoren und Apoptose analysiert. Humane C28/I2-Chondrozyten wurden in Medium mit hoher Glukosekonzentration kultiviert und mit IL-1β stimuliert, mit oder ohne EPO-Behandlung. Die Zellviabilität wurde mittels MTT-Assay bestimmt. Oxidativer Stress und metabolische Veränderungen wurden durch ROS-Messung und Glukoseaufnahme bewertet. Die Expression der Zytokine IL-6 und TNF-α sowie Apoptose (mittels TUNEL-Färbung) wurden ebenfalls untersucht. IL-1β reduzierte signifikant die Zellviabilität, erhöhte die ROS-Produktion und Glukoseaufnahme, steigerte IL-6- und TNF-α-Expression und induzierte Apoptose. Die Behandlung mit EPO konnte diese Effekte dosisabhängig abschwächen, indem sie die Zellviabilität verbesserte, oxidativen Stress reduzierte, die Glukoseaufnahme normalisierte und inflammatorische sowie apoptotische Marker senkte. Diese Ergebnisse deuten darauf hin, dass EPO den IL-1β-induzierten Stress in Chondrozyten unter hyperglykämischen Bedingungen moduliert. EPO könnte somit einen neuen therapeutischen Ansatz zur Behandlung von Arthrose im Kontext von Diabetes oder erhöhter Glukosebelastung darstellen.
Publication History
Received: 11 May 2025
Accepted: 13 August 2025
Article published online:
11 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Pagar KR, Khandbahale SV, Kasar PM. Osteoarthritis: Pathophysiology and current treatment modalities. Asian Journal of Pharmaceutical Research 2019; 9: 289-298
- 2 Zheng J, Huang X, Huang J, Meng B, Li F, Liu H. et al. Association of diabetes mellitus status and hyperglycemia with symptomatic knee osteoarthritis. Arthritis Care & Research 2023; 75: 509-518
- 3 Mendes AF, Rosa SC, Rufino AT, Ribeiro M, Judas F. Diabetes-induced osteoarthritis: role of hyperglycemia in joint destruction. BMC Musculoskeletal Disorders 2015; 16: 1-2
- 4 Mobasheri A, Vannucci S, Bondy C, Carter S, Innes J, Arteaga M. et al. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histology and histopathology. 2002
- 5 Peng Z, Sun H, Bunpetch V, Koh Y, Wen Y, Wu D. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials. 2021; 268: 120555
- 6 Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biology 2018; 71: 51-69
- 7 Mukai E, Fujimoto S, Inagaki N. Role of reactive oxygen species in glucose metabolism disorder in diabetic pancreatic β-cells. Biomolecules. 2022; 12: 1228
- 8 González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. International Journal of Molecular Sciences 2023; 24: 9352
- 9 Li Q, Wen Y, Wang L, Chen B, Chen J, Wang H. et al. Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis. Experimental & Molecular Medicine 2021; 53: 1735-1747
- 10 Yang F, Zhu D, Wang Z, Ma Y, Huang L, Kang X. et al. Role of advanced glycation end products in intervertebral disc degeneration: mechanism and therapeutic potential. Oxidative Medicine and Cellular Longevity 2022; 2022: 7299005
- 11 Shokrzadeh M, Mohammadpour A, Ghassemi-Barghi N, Hoseini V, Abediankenari S, Tabari YS. Metallothionein-2A (rs1610216&rs28366003) gene polymorphisms and the risk of stomach adenocarcinoma. Arquivos de Gastroenterologia 2019; 56: 367-371
- 12 Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and osteoarthritis: exploring the interactions and therapeutic implications of insulin, metformin, and GLP-1-based interventions. Biomedicines. 2024; 12: 1630
- 13 Tsiftsoglou AS. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): implications in regenerative medicine. Cells. 2021; 10: 2140
- 14 Tóthová Z, Šemeláková M, Solárová Z, Tomc J, Debeljak N, Solár P. The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization. International Journal of Molecular Sciences 2021; 22: 7682
- 15 Obeagu E, Obeagu G. The Crucial Role of Erythropoietin in Managing Anemia in HIV: A Review. Elite Journal of Scientific Research and Review 2024; 2: 24-36
- 16 Wu Y, Yang B. Erythropoietin Receptor/β common receptor: a shining light on acute kidney injury induced by ischemia-reperfusion. Frontiers in immunology 2021; 12: 697796
- 17 Heiland CE, Ericsson M, Pohanka A, Ekström L, Marchand A. Optimizing detection of erythropoietin receptor agonists from dried blood spots for anti-doping application. Drug testing and analysis 2022; 14: 1377-1386
- 18 Ghassemi-Barghi N, Ehsanfar Z, Mohammadrezakhani O, Ashari S, Ghiabi S, Bayrami Z. Mechanistic approach for protective effect of ARA290, a specific ligand for the erythropoietin/CD131 heteroreceptor, against cisplatin-induced nephrotoxicity, the involvement of apoptosis and inflammation pathways. Inflammation. 2023; 46: 342-358
- 19 Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM. et al. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radical Biology and Medicine. 2024
- 20 Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. Journal of Neurochemistry 2021; 158: 1032-1057
- 21 Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomedicine & Pharmacotherapy 2021; 139: 111558
- 22 Dulmovits BM, Tang Y, Papoin J, He M, Li J, Yang H. et al. HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood. The Journal of the American Society of Hematology 2022; 139: 3181-3193
- 23 Dey S, Lee J, Noguchi CT. Erythropoietin non-hematopoietic tissue response and regulation of metabolism during diet induced obesity. Frontiers in Pharmacology 2021; 12: 725734
- 24 Fu XN, Li HW, Du N, Liang X, He SH, Guo KJ. et al. Erythropoietin enhances meniscal regeneration and prevents osteoarthritis formation in mice. Am J Transl Res 2020; 12: 6464-6477
- 25 Betsch M, Thelen S, Santak L, Herten M, Jungbluth P, Miersch D. et al. The role of erythropoietin and bone marrow concentrate in the treatment of osteochondral defects in mini-pigs. PLoS One 2014; 9: e92766
- 26 Rauner M, Murray M, Thiele S, Watts D, Neumann D, Gabet Y. et al. Epo/EpoR signaling in osteoprogenitor cells is essential for bone homeostasis and Epo-induced bone loss. Bone Research 2021; 9: 42
- 27 Yan W, Li Y, Xie S, Tao WA, Hu J, Liu H. et al. Chondrocyte-Targeted Delivery System of Sortase A-Engineered Extracellular Vesicles Silencing MMP13 for Osteoarthritis Therapy. Advanced Healthcare Materials. 2024: 2303510
- 28 Meszaros EC, Malemud CJ. Phosphorylation of STAT proteins by recombinant human IL-6 in immortalized human chondrocyte cell lines, T/C28a2 and C28/I2. Journal of Inflammation Research. 2017: 143-150
- 29 Ghassemi-Barghi N, Varshosaz J, Etebari M, Dehkordi AJ. Role of recombinant human erythropoietin loading chitosan-tripolyphosphate nanoparticles in busulfan-induced genotoxicity: Analysis of DNA fragmentation via comet assay in cultured HepG2 cells. Toxicology in Vitro 2016; 36: 46-52
- 30 Shokrzadeh M, Etebari M, Ghassemi-Barghi N. An engineered non-erythropoietic erythropoietin-derived peptide, ARA290, attenuates doxorubicin induced genotoxicity and oxidative stress. Toxicology in Vitro 2020; 66: 104864
- 31 Motafeghi F, Fakhri BMS, Ghassemi Barghi N. Mechanisms of ARA290 in counteracting cadmium-triggered neurotoxicity in PC12 cells. Toxicology Research 2025; 14: tfaf023
- 32 Ashari S, Naghsh N, Salari Y, Barghi NG, Bagheri A. Dimethyl fumarate attenuates di-(2-ethylhexyl) phthalate-induced nephrotoxicity through the Nrf2/HO-1 and NF-κB signaling pathways. Inflammation. 2023; 46: 453-467
- 33 Motafeghi F, Shahsavari R, Mortazavi P, Babaei A, Samadi Mojaveri P, Khojasteh OA. et al. Metformin and Aspirin: Anticancer effects on A549 and PC3 cancer cells and the mechanisms of action. Toxicology Research 2023; 12: 702-708
- 34 Motafeghi F, Mortazavi P, Shahsavari R, Shaker M, Mohammadi-Berenjestanaki H, Shokrzadeh M. Kombucha mushroom extract: anticancer, antioxidant, and antimicrobial properties. Applied In Vitro Toxicology 2023; 9: 90-103
- 35 Wang T, Hao L, Yang K, Feng W, Guo Z, Liu M. et al. Fecal microbiota transplantation derived from mild cognitive impairment individuals impairs cerebral glucose uptake and cognitive function in wild-type mice: Bacteroidetes and TXNIP-GLUT signaling pathway. Gut Microbes 2024; 16: 2395907
- 36 Ashari S, Karami M, Shokrzadeh M, Ghandadi M, Ghassemi-Barghi N, Dashti A. et al. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. Toxicology mechanisms and methods 2020; 30: 427-437
- 37 Shokrzadeh M, Bagheri A, Ghassemi-Barghi N, Rahmanian N, Eskandani M. Doxorubicin and doxorubicin-loaded nanoliposome induce senescence by enhancing oxidative stress, hepatotoxicity, and in vivo genotoxicity in male Wistar rats. Naunyn-Schmiedeberg’s archives of pharmacology 2021; 394: 1803-1813
- 38 Motafeghi F, Mortazavi P, Zabihi J, Soroori A, Samadi Mojaveri P, Shokrzadeh M. Protective Effect of Resveratrol on Cytotoxicity, Genotoxicity, and Oxidative Stress Caused by Cyclophosphamide and Methotrexate in Bone Marrow Stem Cell Line and Blood Lymphocytes of the Rat. Applied In Vitro Toxicology 2023; 9: 129-136
- 39 Cannata F, Vadalà G, Ambrosio L, Napoli N, Papalia R, Denaro V. et al. Osteoarthritis and type 2 diabetes: From pathogenetic factors to therapeutic intervention. Diabetes/metabolism research and reviews 2020; 36: e3254
- 40 Di Vito A, Bria J, Antonelli A, Mesuraca M, Barni T, Giudice A. et al. A review of novel strategies for human periodontal ligament stem cell ex vivo expansion: are they an evidence-based promise for regenerative periodontal therapy?. International Journal of Molecular Sciences 2023; 24: 7798
- 41 Wei Q, Zhu X, Wang L, Zhang W, Yang X, Wei W. Extracellular matrix in synovium development, homeostasis and arthritis disease. International Immunopharmacology 2023; 121: 110453
- 42 Statham P, Jones E, Jennings LM, Fermor HL. Reproducing the biomechanical environment of the chondrocyte for cartilage tissue engineering. Tissue Engineering Part B: Reviews 2022; 28: 405-420
- 43 Kuryata O, Akimov O, Denisenko S, Kostenko H, Kostenko V, Mishchenko A. et al. Chondroitin sulfate in osteoarthritis management among diabetic patients: molecular mechanisms and clinical potential. Romanian Journal of Diabetes Nutrition and Metabolic Diseases 2023; 30: 481-493
- 44 Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N. et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine 2022; 184: 114-134
- 45 Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry 2021; 209: 112891
- 46 Black HS. A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants. 2022; 11: 2003
- 47 Fakhri BMS, Ghassemi Barghi N, Moradnia Mehdikhanmahaleh M, Raeis Zadeh SMM, Mousavi T, Rezaee R. et al. Pharmaceutical wastewater toxicity: An ignored threat to the public health. Sustainable Environment 2024; 10: 2322821
- 48 Qi Z, Zhu J, Cai W, Lou C, Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Molecular and cellular biochemistry 2024; 479: 1513-1524
- 49 Ebrahimi R, Shokrzadeh M, Ghassemi Barghi N. Effects of melatonin on the Bisphenol-A-induced cytotoxicity and genetic toxicity in colon cancer cell lines, normal gingival cell lines, and bone marrow stem cell lines. Cancer Informatics 2021; 20 11769351211056295
- 50 de Sá Pereira ION. The Effect of Erythropoietin in the Nonsurgical Treatment of Periodontitis-A Systematic Review. PQDT-Global. 2023
- 51 Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y. et al. Revitalizing ancient mitochondria with nano-strategies: mitochondria-remedying nanodrugs concentrate on disease control. Advanced Materials 2024; 36: 2308239
- 52 Infante M, Padilla N, Alejandro R, Caprio M, Della-Morte D, Fabbri A. et al. Diabetes-modifying antirheumatic drugs: the roles of dmards as glucose-lowering agents. Medicina. 2022; 58: 571
- 53 Shokrzadeh M, Goleij P, Behravan E, Ghassemi-Barghi N, Salehabadi Y, Rezaei A. Association between diabetics and intestinal cancer with the risk of mutation in CD38 gene in Iranian population. Arquivos de Gastroenterologia 2020; 57: 137-143
- 54 Zheng DH, Han ZQ, Wang XX, Ma D, Zhang J. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs). Chem Biol Interact 2019; 305: 40-47
