Subscribe to RSS
DOI: 10.1055/a-2779-5302
Concurrent Biopsy During Liver-Directed Therapy: Considerations, Techniques, and Expanding Role in Clinical Practice
Authors
Abstract
As oncologic care continues to evolve toward precision medicine, the role of percutaneous biopsy in the care of those with primary and metastatic liver cancers has expanded beyond diagnosis to include molecular and histologic profiling that guides treatment selection, prognostication, and predicts outcomes, amongst other uses. Interventional radiologists (IRs), who can perform both percutaneous liver biopsies and liver-directed therapies (LDT) to treat liver cancer, such as transarterial embolization and percutaneous ablation, are uniquely positioned to integrate concurrent biopsy into LDT procedural workflows. This review explores the rationale, safety, technical considerations, and clinical applications of performing liver tumor biopsy at the time of LDT. While data on concurrent biopsy safety during LDT are limited, early evidence suggests comparable complication rates to standalone procedures, with potential opportunities to detect and manage biopsy-related issues during the therapeutic intervention. Common cancers treated with LDT, such as hepatocellular carcinoma (HCC) and neuroendocrine tumors (NETs), provide clinical examples where concurrent biopsy during LDT provides valuable clinical information relevant to both IRs and other members of the treatment team. In HCC, biopsy enables histopathologic confirmation and molecular profiling (e.g., CTNNB1 and TP53 mutations, β-catenin and NRF2 pathway alterations), which correlate with LDT outcomes. In NETs, biopsy can detect changes in Ki-67 index and tumor grade that influence prognosis and treatment strategy. As performance of and evidence for biopsy at the time of LDT grows, IRs can drive the integration of concurrent biopsy into routine practice, optimizing personalized cancer care for their patients.
Keywords
percutaneous biopsy - liver-directed therapy - embolization - hepatocellular carcinoma - neuroendocrine tumorPublication History
Received: 26 June 2025
Accepted: 23 December 2025
Article published online:
22 January 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Tam AL, Lim HJ, Wistuba II. et al. Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J Vasc Interv Radiol 2016; 27 (01) 8-19
- 2 Sone M, Sugawara S, Yatabe Y. Role of image-guided percutaneous needle biopsy in the age of precision medicine. Curr Oncol Rep 2022; 24 (08) 1035-1044
- 3 Russo FP, Imondi A, Lynch EN, Farinati F. When and how should we perform a biopsy for HCC in patients with liver cirrhosis in 2018? A review. Dig Liver Dis 2018; 50 (07) 640-646
- 4 Brusset B, Jacquemin M, Teyssier Y. et al. Radiological diagnosis of hepatocellular carcinoma does not preclude biopsy before treatment. JHEP Rep Innov Hepatol 2023; 6 (01) 100957
- 5 Kitsel Y, Cooke T, Sotirchos V, Sofocleous CT. Colorectal cancer liver metastases: genomics and biomarkers with focus on local therapies. Cancers (Basel) 2023; 15 (06) 1679
- 6 Weinfurtner K, Crainic JA, Tischfield D. et al. Distinct metabolic phenotype renders β-catenin mutant hepatocellular carcinoma susceptible to treatment-induced ischemia. medRxiv 2024;
- 7 Ziv E, Zhang Y, Kelly L. et al. NRF2 dysregulation in hepatocellular carcinoma and ischemia: a cohort study and laboratory investigation. Radiology 2020; 297 (01) 225-234
- 8 Koenig JL, Toesca DAS, Harris JP. et al. Microsatellite instability and adjuvant chemotherapy in stage II colon cancer. Am J Clin Oncol 2019; 42 (07) 573-580
- 9 Benson AB, Venook AP, Al-Hawary MM. et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19 (03) 329-359
- 10 Hainsworth JD, Meric-Bernstam F, Swanton C. et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018; 36 (06) 536-542
- 11 Sartore-Bianchi A, Trusolino L, Martino C. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016; 17 (06) 738-746
- 12 Sotirchos VS, Petrovic LM, Gönen M. et al. Colorectal cancer liver metastases: biopsy of the ablation zone and margins can be used to predict oncologic outcome. Radiology 2016; 280 (03) 949-959
- 13 Vasiniotis Kamarinos N, Vakiani E, Gonen M. et al. Biopsy and margins optimize outcomes after thermal ablation of colorectal liver metastases. Cancers (Basel) 2022; 14 (03) 693
- 14 Grillo F, Albertelli M, Brisigotti MP. et al. Grade increases in gastroenteropancreatic neuroendocrine tumor metastases compared to the primary tumor. Neuroendocrinology 2016; 103 (05) 452-459
- 15 Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011; 35 (06) 853-860
- 16 Gupta A, Johnson WV, Henderson NL. et al. Patient, caregiver, and clinician perspectives on the time burdens of cancer care. JAMA Netw Open 2024; 7 (11) e2447649
- 17 Adam R, Nair R, Duncan LF. et al. Treatment burden in individuals living with and beyond cancer: a systematic review of qualitative literature. PLoS One 2023; 18 (05) e0286308
- 18 Cazzato RL, Buy X, Alberti N, Fonck M, Grasso RF, Palussière J. Flat-panel cone-beam CT-guided radiofrequency ablation of very small (≤ 1.5 cm) liver tumors: technical note on a preliminary experience. Cardiovasc Intervent Radiol 2015; 38 (01) 206-212
- 19 Abi-Jaoudeh N, Fisher T, Jacobus J. et al. Prospective randomized trial for image-guided biopsy using cone-beam CT navigation compared with conventional CT. J Vasc Interv Radiol 2016; 27 (09) 1342-1349
- 20 Sheth RA, Baerlocher MO, Connolly BL. et al. Society of Interventional Radiology quality improvement standards on percutaneous needle biopsy in adult and pediatric patients. J Vasc Interv Radiol 2020; 31 (11) 1840-1848
- 21 Tian G, Kong D, Jiang T, Li L. Complications after percutaneous ultrasound-guided liver biopsy: a systematic review and meta-analysis of a population of more than 12,000 patients from 51 cohort studies. J Ultrasound Med 2020; 39 (07) 1355-1365
- 22 Boyum JH, Atwell TD, Wall DJ. et al. Incidence of major hemorrhage after aggressive image-guided liver mass biopsy in the era of individualized medicine. Abdom Radiol (NY) 2019; 44 (06) 2067-2073
- 23 Midia M, Odedra D, Shuster A, Midia R, Muir J. Predictors of bleeding complications following percutaneous image-guided liver biopsy: a scoping review. Diagn Interv Radiol 2019; 25 (01) 71-80
- 24 Singhal S, MD P, Inuganti S, Botcha S, Deepashree DT, Uthappa MC. Percutaneous ultrasound-guided plugged liver biopsy - a single-centre experience. Pol J Radiol 2021; 86 (01) e239-e245
- 25 Yoon JK, Lee CK, Yoon H, Choi HJ, Kim SS. Ultrasound-guided percutaneous biopsy with needle track plugging in patients with focal liver lesions on an outpatient basis: a randomized controlled trial. Korean J Radiol 2024; 25 (10) 902-912
- 26 Koh S, Kwon H, Hwangbo L, Kim CW, Kim S, Hong SB. Decreased bleeding-related adverse events using track embolization with gelatin sponge slurry after percutaneous liver biopsy: a propensity score-matched study. J Vasc Interv Radiol 2023; 34 (12) 2128-2136
- 27 Silva MA, Hegab B, Hyde C, Guo B, Buckels JA, Mirza DF. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut 2008; 57 (11) 1592-1596
- 28 Takamori R, Wong LL, Dang C, Wong L. Needle-tract implantation from hepatocellular cancer: is needle biopsy of the liver always necessary?. Liver Transpl 2000; 6 (01) 67-72
- 29 Fotiadis N, De Paepe KN, Bonne L. et al. Comparison of a coaxial versus non-coaxial liver biopsy technique in an oncological setting: diagnostic yield, complications and seeding risk. Eur Radiol 2020; 30 (12) 6702-6708
- 30 Maturen KE, Nghiem HV, Marrero JA. et al. Lack of tumor seeding of hepatocellular carcinoma after percutaneous needle biopsy using coaxial cutting needle technique. AJR Am J Roentgenol 2006; 187 (05) 1184-1187
- 31 Schaffler-Schaden D, Birsak T, Zintl R, Lorber B, Schaffler G. Risk of needle tract seeding after coaxial ultrasound-guided percutaneous biopsy for primary and metastatic tumors of the liver: report of a single institution. Abdom Radiol (NY) 2020; 45 (10) 3301-3306
- 32 Weinfurtner K, Cho J, Ackerman D. et al. Variability in biopsy quality informs translational research applications in hepatocellular carcinoma. Sci Rep 2021; 11 (01) 22763
- 33 Tse JR, Terashima K, Shen L, McWilliams JP, Lu DSK, Raman SS. Safety of percutaneous, image-guided biopsy of hepatocellular carcinoma with and without concurrent ablation. Abdom Radiol (NY) 2022; 47 (08) 2640-2646
- 34 Maducolil JE, Girgis S, Mustafa MA. et al. Risk of tumour seeding in patients with liver lesions undergoing biopsy with or without concurrent ablation: meta-analysis. BJS Open 2024; 8 (03) zrae050
- 35 Bertot LC, Sato M, Tateishi R, Yoshida H, Koike K. Mortality and complication rates of percutaneous ablative techniques for the treatment of liver tumors: a systematic review. Eur Radiol 2011; 21 (12) 2584-2596
- 36 Livraghi T, Meloni F, Solbiati L, Zanus G. Collaborative Italian Group using AMICA system. Complications of microwave ablation for liver tumors: results of a multicenter study. Cardiovasc Intervent Radiol 2012; 35 (04) 868-874
- 37 Liang P, Wang Y, Yu X, Dong B. Malignant liver tumors: treatment with percutaneous microwave ablation–complications among cohort of 1136 patients. Radiology 2009; 251 (03) 933-940
- 38 Szpakowski JL, Drasin TE, Lyon LL. Rate of seeding with biopsies and ablations of hepatocellular carcinoma: a retrospective cohort study. Hepatol Commun 2017; 1 (09) 841-851
- 39 Blaise L, Ziol M, Campani C. et al. Utility of tumor and non-tumor biopsies during percutaneous radiofrequency ablation for hepatocellular carcinoma. JHEP Rep Innov Hepatol 2025; 7 (09) 101430
- 40 Chiang J, Raman SS, Ramakrishnan A. et al. Correlation of needle biopsy-acquired histopathologic grade of hepatocellular carcinoma with outcomes after thermal ablation. J Vasc Interv Radiol 2025; 36 (01) 50-57
- 41 Preger L. Hepatic arteriovenous fistula after percutaneous liver biopsy. Am J Roentgenol Radium Ther Nucl Med 1967; 101 (03) 619-620
- 42 Okuda K, Musha H, Nakajima Y. et al. Frequency of intrahepatic arteriovenous fistula as a sequela to percutaneous needle puncture of the liver. Gastroenterology 1978; 74 (06) 1204-1207
- 43 Hellekant C. Vascular complications following needle puncture of the liver. Clinical angiography. Acta Radiol Diagn (Stockh) 1976; 17 (02) 209-222
- 44 Wallace S, Medellin H, Nelson RS. Angiographic changes due to needle biopsy of the liver. Radiology 1972; 105 (01) 13-18
- 45 Jabbour N, Reyes J, Zajko A. et al. Arterioportal fistula following liver biopsy. Three cases occurring in liver transplant recipients. Dig Dis Sci 1995; 40 (05) 1041-1044
- 46 Dutta S, Chapa UK, Ansari MI. et al. Arterio-hepatic venous fistula following liver biopsy: a rare case report and literature review. Vasc Endovascular Surg 2021; 55 (02) 177-182
- 47 Machicao VI, Lukens FJ, Lange SM, Scolapio JS. Arterioportal fistula causing acute pancreatitis and hemobilia after liver biopsy. J Clin Gastroenterol 2002; 34 (04) 481-484
- 48 Lee SJ, Lim JH, Lee WJ, Lim HK, Choo SW, Choo IW. Transient subsegmental hepatic parenchymal enhancement on dynamic CT: a sign of postbiopsy arterioportal shunt. J Comput Assist Tomogr 1997; 21 (03) 355-360
- 49 Piccinino F, Sagnelli E, Pasquale G, Giusti G. Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies. J Hepatol 1986; 2 (02) 165-173
- 50 Zhou HB. Hemobilia and other complications caused by percutaneous ultrasound-guided liver biopsy. World J Gastroenterol 2014; 20 (13) 3712-3715
- 51 Park HS, Lee SH, Kim YI. et al. Postbiopsy arterioportal fistula in patients with hepatocellular carcinoma: clinical significance in transarterial chemoembolization. AJR Am J Roentgenol 2006; 186 (02) 556-561
- 52 Sotirchos VS, Vakiani E, Sigel C. et al. Evaluation of the Ki-67 labeling index on immediate pre-ablation biopsies as a predictive biomarker of local recurrence of colorectal cancer liver metastases. Cytotechnology 2025; 77 (01) 31
- 53 Chernyak V, Fowler KJ, Kamaya A. et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology 2018; 289 (03) 816-830
- 54 Kim YY, Lee S, Shin J. et al. Diagnostic performance of liver imaging reporting and data system version 2017 versus version 2018 for hepatocellular carcinoma: a systematic review and meta-analysis of comparative studies. J Magn Reson Imaging 2021; 54 (06) 1912-1919
- 55 Tamura S, Kato T, Berho M. et al. Impact of histological grade of hepatocellular carcinoma on the outcome of liver transplantation. Arch Surg 2001; 136 (01) 25-30 , discussion 31
- 56 Park SK, Jung YK, Chung DH. et al. Factors influencing hepatocellular carcinoma prognosis after hepatectomy: a single-center experience. Korean J Intern Med (Korean Assoc Intern Med) 2013; 28 (04) 428-438
- 57 Shinkawa H, Tanaka S, Kabata D. et al. The prognostic impact of tumor differentiation on recurrence and survival after resection of hepatocellular carcinoma is dependent on tumor size. Liver Cancer 2021; 10 (05) 461-472
- 58 Shin SH, Park JY, Hwang C. et al. Histological subtypes of hepatocellular carcinoma: their clinical and prognostic significance. Ann Diagn Pathol 2023; 64: 152134
- 59 Ziol M, Poté N, Amaddeo G. et al. Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance. Hepatology 2018; 68 (01) 103-112
- 60 Villanueva A, Llovet JM. Liver cancer in 2013: mutational landscape of HCC–the end of the beginning. Nat Rev Clin Oncol 2014; 11 (02) 73-74
- 61 Guichard C, Amaddeo G, Imbeaud S. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (06) 694-698
- 62 Ziv E, Yarmohammadi H, Boas FE. et al. Gene signature associated with upregulation of the wnt/β-catenin signaling pathway predicts tumor response to transarterial embolization. J Vasc Interv Radiol 2017; 28 (03) 349-355.e1
- 63 Li B, Li Y, Zhou H. et al. Multiomics identifies metabolic subtypes based on fatty acid degradation allocating personalized treatment in hepatocellular carcinoma. Hepatology 2024; 79 (02) 289-306
- 64 Jovel J, Lin Z, O'keefe S. et al. A survey of molecular heterogeneity in hepatocellular carcinoma. Hepatol Commun 2018; 2 (08) 941-955
- 65 Zhao K, Karimi A, Kelly L. et al. TP53 mutation predicts worse survival and earlier local progression in patients with hepatocellular carcinoma treated with transarterial embolization. Curr Oncol 2025; 32 (01) 51
- 66 Xue M, Wu Y, Fan W. et al. Prognostic value of TP53 mutation for transcatheter arterial chemoembolization failure/refractoriness in HBV-related advanced hepatocellular carcinoma. Cancer Res Treat 2020; 52 (03) 925-937
- 67 Montironi C, Castet F, Haber PK. et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 2023; 72 (01) 129-140
- 68 Kim M, Hui KM, Shi M, Reau N, Aloman C. Differential expression of hepatic cancer stemness and hypoxia markers in residual cancer after locoregional therapies for hepatocellular carcinoma. Hepatol Commun 2022; 6 (11) 3247-3259
- 69 Kudo M, Ren Z, Guo Y. et al; LEAP-012 investigators. Transarterial chemoembolisation combined with lenvatinib plus pembrolizumab versus dual placebo for unresectable, non-metastatic hepatocellular carcinoma (LEAP-012): a multicentre, randomised, double-blind, phase 3 study. Lancet 2025; 405 (10474): 203-215
- 70 Sangro B, Bouattour M, Park JW. et al. Patterns of radiological progression in participants (pts) with embolization-eligible hepatocellular carcinoma (HCC) treated with durvalumab (D) + bevacizumab (B) + transarterial chemoembolization (TACE) and placebos + TACE: EMERALD-1 post hoc analysis. J Clin Oncol 2025; 43: 574
- 71 Harding JJ, Nandakumar S, Armenia J. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 2019; 25 (07) 2116-2126
- 72 Haber PK, Castet F, Torres-Martin M. et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma. Gastroenterology 2023; 164 (01) 72-88.e18
- 73 Tang Z, Bai Y, Fang Q. et al. Spatial transcriptomics reveals tryptophan metabolism restricting maturation of intratumoral tertiary lymphoid structures. Cancer Cell 2025; 43 (06) 1025-1044.e14
- 74 Vanhersecke L, Brunet M, Guégan JP. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat Cancer 2021; 2 (08) 794-802
- 75 Dasari A, Shen C, Halperin D. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017; 3 (10) 1335-1342
- 76 DePietro DM, Li X, Shamimi-Noori SM. Chemoembolization beyond hepatocellular carcinoma: what tumors can we treat and when?. Semin Intervent Radiol 2024; 41 (01) 27-47
- 77 Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97 (04) 934-959
- 78 Janson ET, Holmberg L, Stridsberg M. et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997; 8 (07) 685-690
- 79 Dobson R, Burgess MI, Pritchard DM, Cuthbertson DJ. The clinical presentation and management of carcinoid heart disease. Int J Cardiol 2014; 173 (01) 29-32
- 80 Rindi G, Mete O, Uccella S. et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 2022; 33 (01) 115-154
- 81 Hofman MS, Hicks RJ. Changing paradigms with molecular imaging of neuroendocrine tumors. Discov Med 2012; 14 (74) 71-81
- 82 Varghese DG, Del Rivero J, Bergsland E. Grade progression and intrapatient tumor heterogeneity as potential contributors to resistance in gastroenteropancreatic neuroendocrine tumors. Cancers (Basel) 2023; 15 (14) 3712
- 83 Keck KJ, Choi A, Maxwell JE. et al. Increased grade in neuroendocrine tumor metastases negatively impacts survival. Ann Surg Oncol 2017; 24 (08) 2206-2212
- 84 Shi H, Zhang Q, Han C, Zhen D, Lin R. Variability of the Ki-67 proliferation index in gastroenteropancreatic neuroendocrine neoplasms - a single-center retrospective study. BMC Endocr Disord 2018; 18 (01) 51
- 85 Byun S, Ackerman D. Grade creep and the importance of tissue sampling: changes in Ki-67 and grade in serial neuroendocrine tumor samples. Endocr Abstr 2023; 89: 123
- 86 Holmager P, Langer SW, Federspiel B. et al. Increase of Ki-67 index and influence on mortality in patients with neuroendocrine neoplasms. J Neuroendocrinol 2021; 33 (09) e13018
- 87 Merola E, Perren A, Rinke A. et al. High rate of Ki-67 increase in entero-pancreatic NET relapses after surgery with curative intent. J Neuroendocrinol 2022; 34 (10) e13193
- 88 Singh S, Hallet J, Rowsell C, Law CH. Variability of Ki67 labeling index in multiple neuroendocrine tumors specimens over the course of the disease. Eur J Surg Oncol 2014; 40 (11) 1517-1522 (EJSO)
- 89 Panzuto F, Cicchese N, Partelli S. et al. Impact of Ki67 re-assessment at time of disease progression in patients with pancreatic neuroendocrine neoplasms. PLoS One 2017; 12 (06) e0179445
- 90 Botling J, Lamarca A, Bajic D. et al. High-grade progression confers poor survival in pancreatic neuroendocrine tumors. Neuroendocrinology 2020; 110 (11–12): 891-898
- 91 Zhang M, Tan C, Wang X. et al. Digital image analysis of Ki67 heterogeneity improves the diagnosis and prognosis of gastroenteropancreatic neuroendocrine neoplasms. Mod Pathol 2023; 36 (01) 100017
- 92 Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24 (09) R315-R334
- 93 Banck MS, Kanwar R, Kulkarni AA. et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 2013; 123 (06) 2502-2508
- 94 Ziv E, Rice SL, Filtes J. et al. DAXX mutation status of embolization-treated neuroendocrine tumors predicts shorter time to hepatic progression. J Vasc Interv Radiol 2018; 29 (11) 1519-1526
