Semin Hear 2008; 29(3): 259-269
DOI: 10.1055/s-0028-1082032
© Thieme Medical Publishers

Effects of High-Intensity Sound Exposure on Neurotransmitter Chemistry in the Central Auditory System

Donald A. Godfrey1 , Nikki L. Mikesell1 , Timothy G. Godfrey1 , Andrea B. Fulcomer1 , Wei Kong1 , Matthew A. Godfrey1 , James A. Kaltenbach2 , Jinsheng Zhang2
  • 1Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo Health Science Campus, Toledo, Ohio
  • 2Department of Otolaryngology, Wayne State University, Detroit, Michigan
Further Information

Publication History

Publication Date:
19 August 2008 (online)

ABSTRACT

Exposure to intense sound often leads to tinnitus, the perception of a monotonous sound not actually present. Increased neural spontaneous activity in the central auditory system found in animal models of tinnitus should have a basis in their chemistry. Most chemical studies so far have focused on neurotransmitters, by which neurons communicate with each other, because alteration of this chemistry could easily lead to abnormal neural activity that might be perceived as tinnitus. Although increased spontaneous activity has been observed in the hamster dorsal cochlear nucleus (DCN) a month after intense tone exposure, we did not find increased glutamate concentrations in the 3 layers of the hamster dorsal DCN at that time. We did, however, find decreased glutamate concentrations 2 days after exposure that might correlate with slightly decreased spontaneous activity observed then. Others have provided evidence for decreased glutamate release in the chinchilla DCN 2 days after intense sound exposure. Other intense-sound-induced changes are increased choline acetyltransferase activity in some cochlear nucleus regions, increased acetylcholine receptor sensitivity in some DCN neurons, and some changes in the γ-aminobutyric acid (GABA) neurotransmitter system in the inferior colliculus. There is a need for more study of these and other neurotransmitter systems to determine their possible roles in tinnitus.

REFERENCES

  • 1 Henry J A, Dennis K C, Schechter M A. General review of tinnitus: prevalence, mechanisms, effects, and management.  J Speech Lang Hear Res. 2005;  48 1204-1235
  • 2 Clark W W, Bohne B A. Effects of noise on hearing.  JAMA. 1999;  281 1658-1659
  • 3 Morest D K, Bohne B A. Noise-induced degeneration in the brain and representation of inner and outer hair cells.  Hear Res. 1983;  9 145-151
  • 4 Michler S A, Illing R-B. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.  J Comp Neurol. 2002;  451 250-266
  • 5 Bilak M, Kim J, Potashner S J, Bohne B A, Morest D K. New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma.  Exp Neurol. 1997;  147 256-268
  • 6 Kim J, Morest D K, Bohne B A. Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation.  Hear Res. 1997;  103 169-191
  • 7 Morest D K, Kim J, Potashner S J, Bohne B A. Long-term degeneration in the cochlear nerve and cochlear nucleus of the adult chinchilla following acoustic overstimulation.  Microsc Res Tech. 1998;  41 205-216
  • 8 Muly S M, Gross J S, Morest D K, Potashner S J. Synaptophysin in the cochlear nucleus following acoustic trauma.  Exp Neurol. 2002;  177 202-221
  • 9 Kaltenbach J A, McCaslin D L. Increases in spontaneous activity in the dorsal cochlear nucleus following exposure to high intensity sound: a possible neural correlate of tinnitus.  Audit Neurosci. 1996;  3 57-78
  • 10 Kaltenbach J A, Zhang J, Afman C E. Plasticity of spontaneous neural activity in the dorsal cochlear nucleus after intense sound exposure.  Hear Res. 2000;  147 282-292
  • 11 Kaltenbach J A, Zhang J, Finlayson P. Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus.  Hear Res. 2005;  206 200-226
  • 12 Brown M C. Anatomical and physiological studies of type I and type II spiral ganglion neurons. In: Merchán MA, Juiz JM, Godfrey DA, Mugnaini E The Mammalian Cochlear Nuclei: Organization and Function. New York, NY; Plenum 1993: 43-54
  • 13 Lorente de Nó R. The Primary Acoustic Nuclei. New York, NY; Raven 1981
  • 14 Morest D K, Kim J, Bohne B A. Neuronal and transneuronal degeneration of auditory axons in the brainstem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns.  Hear Res. 1997;  103 151-168
  • 15 Godfrey D A, Parli J A, Dunn J D, Ross C D. Neurotransmitter microchemistry of the cochlear nucleus and superior olivary complex. In: Syka J, Masterton RB Auditory Pathway. New York, NY; Plenum 1988: 107-121
  • 16 Godfrey D A, Farms W B, Godfrey T G, Mikesell N L, Liu J. Amino acid concentrations in rat cochlear nucleus and superior olive.  Hear Res. 2000;  150 189-205
  • 17 Potashner S J, Benson C G, Ostapoff E-M, Lindberg N, Morest D K. Glycine and GABA: transmitter candidates of projections descending to the cochlear nucleus. In: Merchán MA, Juiz JM, Godfrey DA, Mugnaini E The Mammalian Cochlear Nuclei: Organization and Function. New York, NY; Plenum 1993: 195-210
  • 18 Wenthold R J. Glutamate and aspartate as neurotransmitters of the auditory nerve. In: Drescher DG Auditory Biochemistry. Springfield, IL; Charles C. Thomas 1985: 125-140
  • 19 Potashner S J, Morest D K, Oliver D L, Jones D R. Identification of glutamatergic and aspartatergic pathways in the auditory system. In: Drescher DG Auditory Biochemistry. Springfield, IL; Charles C. Thomas 1985: 141-162
  • 20 Wenthold R J, Hunter C, Petralia R S. Excitatory amino acid receptors in the rat cochlear nucleus. In: Merchán MA, Juiz JM, Godfrey DA, Mugnaini E The Mammalian Cochlear Nuclei: Organization and Function. New York, NY; Plenum 1993: 179-194
  • 21 Hackney C M, Osen K K, Ottersen O P, Storm-Mathisen J, Manjaly G. Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus.  Eur J Neurosci. 1996;  8 79-91
  • 22 Godfrey D A, Godfrey T G, Mikesell N L et al.. Chemistry of granular and closely related regions of the cochlear nucleus. In: Syka J Acoustical Signal Processing in the Central Auditory System. New York, NY; Plenum 1997: 139-153
  • 23 Wright D D, Ryugo D K. Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat.  J Comp Neurol. 1996;  365 159-172
  • 24 Rubio M E, Juiz J M. Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus.  J Comp Neurol. 2004;  477 253-272
  • 25 Zhou J, Nannapaneni N, Shore S. Vesicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus.  J Comp Neurol. 2007;  500 777-787
  • 26 Kolston J, Osen K K, Hackney C M, Ottersen O P, Storm-Mathisen J. An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig.  Anat Embryol (Berl). 1992;  186 443-465
  • 27 Altschuler R A, Juiz J M, Shore S E, Bledsoe S C, Helfert R H, Wenthold R J. Inhibitory amino acid synapses and pathways in the ventral cochlear nucleus. In: Merchán MA, Juiz JM, Godfrey DA, Mugnaini E The Mammalian Cochlear Nuclei: Organization and Function. New York; Plenum 1993: 211-224
  • 28 Oertel D, Wickesberg R E. Glycinergic inhibition in the cochlear nuclei: evidence for tuberculoventral neurons being glycinergic. In: Merchán MA, Juiz JM, Godfrey DA, Mugnaini E The Mammalian Cochlear Nuclei: Organization and Function. New York, NY; Plenum 1993: 225-237
  • 29 Oertel D, Young E. What's a cerebellar circuit doing in the auditory system?.  Trends Neurosci. 2004;  27 104-110
  • 30 Godfrey D A, Park J L, Rabe J R, Dunn J D, Ross C D. Effects of large brain stem lesions on the cholinergic system in the rat cochlear nucleus.  Hear Res. 1983;  11 133-156
  • 31 Jin Y-M, Godfrey D A, Wang J, Kaltenbach J A. Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus.  Hear Res. 2006;  216–217 168-175
  • 32 Lowry O H, Passonneau J V. A Flexible System of Enzymatic Analysis. New York, NY; Academic Press 1972: 219-260
  • 33 Godfrey D A, Matschinsky F M. Approach to three-dimensional mapping of quantitative histochemical measurements applied to studies of the cochlear nucleus.  J Histochem Cytochem. 1976;  24 697-712
  • 34 Pagano M, Gauvreau K. Principles of Biostatistics. Belmont, CA; Duxbury Press 1993: 257-271
  • 35 Godfrey D A, Mikesell N L, Godfrey T G et al.. Chemistry in the hamster dorsal cochlear nucleus after loud tone exposure. In: Hazell J Proceedings of the Sixth International Tinnitus Seminar. London, United Kingdom; The Tinnitus and Hyperacusis Centre 1999: 203-208
  • 36 Doucet J R, Ross A T, Gillespie M B, Ryugo D K. Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus.  J Comp Neurol. 1999;  408 515-531
  • 37 Chen K, Waller H J, Godfrey T G, Godfrey D A. Glutamatergic transmission of neuronal responses to carbachol in rat dorsal cochlear nucleus slices.  Neuroscience. 1999;  90 1043-1049
  • 38 Muly S M, Gross J S, Potashner S J. Noise trauma alters D-[3H]aspartate release and AMPA binding in chinchilla cochlear nucleus.  J Neurosci Res. 2004;  75 585-596
  • 39 Chang H, Chen K, Kaltenbach J A, Zhang J, Godfrey D A. Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices.  Hear Res. 2002;  164 59-68
  • 40 Abbott S D, Hughes L F, Bauer C A, Salvi R, Caspary D M. Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure.  Neuroscience. 1999;  93 1375-1381
  • 41 Milbrandt J C, Holder T M, Wilson M C, Salvi R J, Caspary D M. GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma.  Hear Res. 2000;  147 251-260
  • 42 Caspary D, Martin D, Ling L et al.. GABAA receptor subunit changes in a noise-exposure model of tinnitus: rat medial geniculate body.  Assoc Res Otolaryngol. 2007;  30 295
  • 43 Cransac H, Cottet-Emard J-M, Hellström S, Peyrin L. Specific sound-induced noradrenergic and serotonergic activation in central auditory structures.  Hear Res. 1998;  118 151-156
  • 44 Thompson A M. A medullary source of norepinephrine in cat cochlear nuclear complex.  Exp Brain Res. 2003;  153 486-490
  • 45 Thompson A M, Thompson G C. Serotonin projection patterns to the cochlear nucleus.  Brain Res. 2001;  907 195-207

Donald A GodfreyPh.D. 

Division of Otolaryngology & Dentistry, University of Toledo Health Science Campus

Mail Stop 1092 3000 Arlington Avenue, Toledo, Ohio 43614

Email: donald.godfrey@utoledo.edu