Subscribe to RSS
DOI: 10.1055/s-0028-1087346
4-(Isoxazol-3-yl)pyrimidines from Pyrimidinyl Nitrile Oxides
Publication History
Publication Date:
12 November 2008 (online)
Abstract
The 1,3-dipolar cycloaddition reaction of pyrimidinyl aldoxime derived nitrile oxides and alkynes delivers 4-(isoxazol-3-yl)pyrimidines. The procedures reported accommodate three points of diversification around this bisheterocyclic scaffold and the resulting library of compounds has been added to the National Institutes of Health repository (ca. 10 mg of each with >90% purity) for pilot-scale biomedical studies with bioassay data available at the National Center for Biotechnology Information PubChem database.
Key words
nitrile oxide - 2-aminopyrimidine - isoxazoles - isoxazolines - ipso substitution - cycloaddition
-
1a
Kryl’skii DV.Shikhaliev KhS.Shestakov AS.Liberman MM. Russian J. Gen. Chem. 2005, 75: 303 -
1b
Hurst DT.Atcha S.Marshall KL. Aust. J. Chem. 1991, 44: 129 -
1c
Crawley LS.Fanshawe WJ.
J. Heterocycl. Chem. 1977, 14: 531 -
2a
Sabat M.VanRens JC.Laufersweiler MJ.Brugel TA.Maier J.Golebiowski A.De B.Easwaran V.Hsieh LC.Walter RL.Mekel MJ.Evdokimov A.Janusz MJ. Bioorg. Med. Chem. Lett. 2006, 16: 5973 -
2b
Laughlin SK.Clark MP.Djung JF.Golebiowski A.Brugel TA.Sabat M.Bookland RG.Laufersweiler MJ.VanRens JC.Townes JA.De B.Hsieh LC.Xu SC.Walter RL.Mekel MJ.Janusz MJ. Bioorg. Med. Chem. Lett. 2005, 15: 2399 -
2c
Nagata T.Masuda K.Maeno S.Miura I. Pest Manage. Sci. 2004, 60: 399 -
2d
Wang S.Meades C.Wood G.Osnowski A.Anderson S.Yuill R.Thomas M.Mezna M.Jackson W.Midgley C.Griffiths G.Fleming I.Green S.McNae I.Wu S.-Y.McInnes C.Zheleva D.Walkinshaw MD.Fischer PM. J. Med. Chem. 2004, 47: 1662 -
2e
Wagner O,Harries V, andDe Kramer J.-J. inventors; DE 19827611 A1. - 3
Shikhaliev KhS.Kryl’skii DV.Kovygin YuA.Verezhnikov VN. Russian J. Gen. Chem. 2005, 75: 294 -
4a
Zanatta N.Flores DC.Madruga CC.Faoro D.Flores AFC.Bonacorso HG.Martins MAP. Synthesis 2003, 894 -
4b
Adlington RM.Baldwin JE.Catterick D.Pritchard GJ. J. Chem. Soc., Perkin Trans. 1 1999, 855 - 5
Malherbe P,Masciadri R,Prinssen E,Spooren W, andThomas AW. inventors; US 2005197337. - 6
Baldwin JE.Pritchard GJ.Rathmell RF. J. Chem. Soc., Perkin Trans. 1 2001, 2906 -
7a
Gabbutt CD.Hepworth JP.Heron BM. J. Chem. Soc., Perkin Trans. 1 1992, 2603 -
7b
Sansebastiano L.Mosti L.Menozzi G.Schenone P.Muratore O.Petta A.Debbia F.Schito AP.Schito GC. Farmaco 1993, 48: 335 -
8a
Giguère D.Patnam R.Bellefleur M.-A.St-Pierre C.Sato S.Roy R. Chem. Commun. 2006, 2379 -
8b
Mosher MD.Natale NR. J. Heterocycl. Chem. 1995, 32: 779 -
8c
Han X.Natale NR. J. Heterocycl. Chem. 2001, 38: 415 -
8d
Han X.Li C.Rider KC.Blumenfeld A.Twamley B.Natale NR. Tetrahedron Lett. 2002, 43: 7673 -
8e
Han X.Twamley B.Natale NR. J. Heterocycl. Chem. 2003, 40: 539 -
8f
Li C.Twamley B.Natale NR. J. Heterocycl. Chem. 2008, 45: 259 - 9
Herrera A.Martínez-Alvarez R.Ramiro P.Almy J.Molro D.Sánchez A. Eur. J. Org. Chem. 2006, 3332 - 10
Adlington RM.Baldwin JE.Catterick D.Pritchard GJ. J. Chem. Soc., Perkin Trans. 1 1999, 855 - 11
Angiolini M.Bassini DF.Gude M.Menichincher M. Tetrahedron Lett. 2005, 46: 8749 -
12a
Calvo L.González-Ortega A.Navarro R.Pérez M.Sañudo MC. Synthesis 2005, 3152 -
12b
Labeeuw O.Phansavath P.Genêt J.-P. Tetrahedron Lett. 2004, 45: 7107 -
12c
Hegde VB.Renga JM.Owen JM. Tetrahedron Lett. 2001, 42: 1847 - 13
Christl M.Huisgen R. Chem. Ber. 1973, 106: 3345 - 14 Note that bleach did not result
in oxidation of the 2-(methyl-thio)pyrimidine moiety. For a related
report, see:
Tene Ghomsi JN.Ahabchane HH.Essassi EM. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179: 353 - 16
Lipinski CA.Lombardo F.Dominy BW.Feeney PJ. Adv. Drug Delivery Rev. 2001, 46: 3 - General Procedure for Bioassays
-
19a
The primary screen involved two high-throughput insect assays, both incorporating 96-well microtiter plates. The first assay was a 96-well high-throughput bioassay for beet armyworm (Spodoptera exigua: Lepidoptera) larvae, based on modifications of Lewer et al.(2006). Eggs of S. exigua were placed on top of artificial diet (100 mL) in each well of 96-well microtiter plate. The diet had been pretreated with test compounds (12 mg dissolved in 30 mL of DMSO-acetone-H2O mixture) layered on top of the diet using a Sagian (Bechman-Coulter, Fullerton, CA) liquid handling system and then allowed to dry for several hours. Infested plates were then covered with a layer sterile cotton batting and the plate lid, and then held in the dark at 29 ˚C (Lewer et al. 2006). Mortality was recoded at 6 d post-treatment. Each plate had six replicates. The second assay used the yellow fever mosquito (Aedes aegypti: Diptera). One-day old larvae of A. aegypti were pippetted into each well of a 96-well microtiter plate that had been pretreated with 6 mg (dissolved in 15 mL of DMSO-acetone-H2O mixture, which had been allowed to dry in the well) of the test compound. The microtiter plates, covered with a lid of prevent evaporation, were held 3 d at r.t., and then graded for mortality. There were six replicates per treatment.
Compounds found to be active were further evaluated a larger format diet-based bioassay using 128-well diet trays (Bio-Serv, Frenchtown, NJ). Three-to-five-second instar larvae of either S. exigua or Helicoverpa zea (corn earworm: Lepidoptera) were placed in each well (3 mL) of the diet tray that had been previously filled with 1 mL of artificial diet to which 25 mg the test compound [dissolved in 50 mL of an acetone-H2O mixture (90:10)] had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adhesive cover, and held at 25 ˚C, 14:10 light/dark for 6 d. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged. -
19b
Lewer P.Graupner PR.Hahn DR.Karr LL.Duebelbeis DO.Lira JM.Anzeveno PB.Fields SC.Gilbert JR.Pearce C. J. Nat. Prod. 2006, 69: 1506 - 20
Krieger RL.Feeny PP.Wilkinson CF. Science 1971, 172: 579
References and Notes
Demeter, D., log Kow model developed at Dow AgroSciences, unpublished work
17
Representative
Examples of 5
4-Methyl-6-(5-phenylisoxazol-3-yl)-
N
-propylpyrimidin-2-amine
¹H
NMR (300 MHz, CDCl3): δ = 7.80 (m,
2 H), 7.42 (m,
3 H), 7.10 (s, 1 H), 7.00 (s, 1 H), 3.42
(m, 2 H), 2.31 (s, 3 H), 2.18 (s, 1 H), 1.62 (m, 2 H), 0.93 (m,
3 H). ¹³C NMR (75 MHz, CDCl3): δ = 170.9,
162.9, 162.7, 156.3, 130.6, 129.3, 127.5, 126.1, 106.8, 105.8, 98.7,
43.5, 23.3, 23.1, 11.8.
N
-(Cyclopropylmethyl)-4-isopropyl-6-(5-phenylisoxazol-3-yl)pyrimidin-2-amine
¹H
NMR (300 MHz, CDCl3): δ = 7.60 (m,
2 H), 7.24 (m,
3 H), 6.91 (s, 1 H), 6.84 (s, 1 H), 5.22
(br s, 1 H), 3.11 (m,
2 H), 2.64 (m, 1 H), 1.27 (d, J = 7.0 Hz,
6 H), 0.82 (m, 1 H), 0.30 (m, 2 H), 0.05 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3):
δ = 178.2,
170.9, 163.6, 162.8, 156.2, 130.6, 129.3, 127.5, 126.1, 104.4, 98.7,
46.8, 36.3, 21.9, 11.9, 3.7.
4-Isopropyl-6-(5-phenylisoxazol-3-yl)-
N
-propyl-pyrimidin-2-amine
¹H
NMR (300 MHz, CDCl3): δ = 7.87 (m,
2 H), 7.50 (m,
3 H), 7.19 (s, 1 H), 7.11 (s, 1 H), 3.50
(m, 2 H), 2.91 (m, 1 H), 1.70 (m, 2 H), 1.30 (d, J = 7.2
Hz, 6 H), 1.02 (t, J = 6.2 Hz,
3 H); note: NH proton not detected. ¹³C
NMR (75 MHz, CDCl3): δ = 170.9, 163.8,
162.6, 156.4, 130.6, 130.2, 129.3, 127.5, 126.1, 104.1, 98.7, 43.6,
36.1, 23.1, 21.9, 11.9.
4-[5-(4-Chlorophenyl)isoxazol-3-yl]-6-isopropyl-
N
-propyl-pyrimidin-2-amine
¹H
NMR (300 MHz, CDCl3): δ = 7.80 (d, J = 8.7 Hz,
2 H), 7.48 (d, J = 8.7
Hz, 2 H), 7.16 (s, 1 H), 7.09 (s, 1 H), 5.90 (br s, 1 H), 3.48 (br
s, 2 H), 2.90 (m, 1 H), 1.70 (m, 2 H), 1.32 (d, J = 7.2
Hz, 6 H), 1.03 (t, J = 7.5
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 178.2,
170.9, 163.6, 162.8, 156.2, 130.6, 129.3, 127.5, 126.1, 104.4, 98.7,
46.8, 36.3, 21.9, 11.9, 3.7.
Representative
Examples of 8
N
-Cyclopentyl-3-[2-(2-methoxyethylamino)-6-methyl-pyrimidin-4-yl]isoxazole-5-carboxamide
¹H
NMR (300 MHz, CDCl3): d = 7.42 (s, 1 H), 7.10
(s, 1 H), 6.55 (br s, 1 H), 5.53 (br s, 1 H), 4.41 (m, 1 H), 3.69-3.55
(m, 4 H), 3.38 (s, 3 H), 2.39 (s, 3 H), 2.13-2.04 (m, 2
H), 1.85-1.52 (m, 6 H). ¹³C
NMR (75 MHz, CDCl3): d = 169.7, 164.3, 163.9,
162.8, 155.5, 154.9, 107.1, 106.2, 71.5, 59.0, 51.9, 41.4, 33.3,
24.4, 24.0.
N
-Benzyl-3-[2-(cyclopentylamino)-6-methylpyrimidin-4-yl]isoxazole-5-carboxamide
¹H
NMR (300 MHz, CDCl3): δ = 7.49 (s,
1 H), 7.35 (m, 5 H), 7.06 (br s, 2 H), 5.22 (d, J = 6.9
Hz, 1 H), 4.64 (d, J = 6.9
Hz, 2 H), 4.33 (m, 1 H), 2.37 (s, 3 H), 2.04 (m, 2 H), 1.72-1.24 (m,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 169.5,
163.9, 162.6, 162.4, 155.9, 154.8, 137.2, 129.1, 129.0, 128.2, 106.7,
106.5, 53.2, 43.8, 33.5, 24.5, 23.9.
N
-(4-Methoxybenzyl)-3-[2-(2-methoxyethylamino)-6-methyl-pyrimidin-4-yl]isoxazole-5-carboxamide
¹H
NMR (300 MHz, CDCl3): δ = 8.46 (br
s, 1 H), 7.46 (s,
1 H), 7.30 (d, J = 8.7
Hz, 2 H), 7.09 (s, 1 H), 6.90 (d, J = 8.7 Hz,
2 H), 5.59 (br s, 1 H), 4.59 (d, J = 5.4
Hz, 2 H), 3.80 (s, 3 H), 3.69-3.56 (m, 4 H), 3.38 (s, 3
H), 2.39 (s, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 169.6, 164.0, 163.8, 162.7, 159.6,
155.7, 154.9, 129.7, 129.2, 114.5, 107.1, 106.5, 70.4, 59.0, 55.6,
43.4, 41.4, 24.4.
3-[2-(Cyclopentylamino)-6-isopropylpyrimidin-4-yl]-
N
-(4-methoxybenzyl)isoxazole-5-carboxamide
¹H
NMR (300 MHz, CDCl3): δ = 7.48 (s,
1 H), 7.29 (d, J = 7.5
Hz, 2 H), 7.08 (s, 1 H), 6.97 (br s, 1 H), 6.88 (d, J = 8.7 Hz,
2 H), 5.23 (br s, 1 H), 4.58 (d, J = 5.1
Hz, 2 H), 4.30 (m, 1 H), 3.79 (s, 3 H), 2.84 (m, 1 H), 2.06 (m,
2 H), 1.73-1.61 (m, 4 H), 1.45 (m, 2 H), 1.25 (d, J = 5.1 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 178.2,
164.1, 163.9, 162.5, 159.6, 155.8, 155.0, 129.7, 129.3, 114.5, 106.6,
104.2, 55.6, 53.3, 43.4, 36.3, 33.5, 24.0, 21.8.