Synlett 2008(19): 3036-3040  
DOI: 10.1055/s-0028-1087346
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

4-(Isoxazol-3-yl)pyrimidines from Pyrimidinyl Nitrile Oxides

Wonken Chounga, Beth A. Lorsbachb, Thomas C. Sparksb, James M. Ruizb, Mark J. Kurth*a
a Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
Fax: +1(530)7528995; e-Mail: mjkurth@ucdavis.edu;
b Dow AgroSciences, Discovery Research, Indianapolis, IN 46268, USA
Further Information

Publication History

Received 26 February 2008
Publication Date:
12 November 2008 (online)

Abstract

The 1,3-dipolar cycloaddition reaction of pyrimidinyl aldoxime derived nitrile oxides and alkynes delivers 4-(isoxazol-3-yl)pyrimidines. The procedures reported accommodate three points of diversification around this bisheterocyclic scaffold and the resulting library of compounds has been added to the National Institutes of Health repository (ca. 10 mg of each with >90% purity) for pilot-scale biomedical studies with bioassay data available at the National Center for Biotechnology Information PubChem database.

    References and Notes

  • 1a Kryl’skii DV. Shikhaliev KhS. Shestakov AS. Liberman MM. Russian J. Gen. Chem.  2005,  75:  303 
  • 1b Hurst DT. Atcha S. Marshall KL. Aust. J. Chem.  1991,  44:  129 
  • 1c Crawley LS. Fanshawe WJ.
    J. Heterocycl. Chem.  1977,  14:  531 
  • 2a Sabat M. VanRens JC. Laufersweiler MJ. Brugel TA. Maier J. Golebiowski A. De B. Easwaran V. Hsieh LC. Walter RL. Mekel MJ. Evdokimov A. Janusz MJ. Bioorg. Med. Chem. Lett.  2006,  16:  5973 
  • 2b Laughlin SK. Clark MP. Djung JF. Golebiowski A. Brugel TA. Sabat M. Bookland RG. Laufersweiler MJ. VanRens JC. Townes JA. De B. Hsieh LC. Xu SC. Walter RL. Mekel MJ. Janusz MJ. Bioorg. Med. Chem. Lett.  2005,  15:  2399 
  • 2c Nagata T. Masuda K. Maeno S. Miura I. Pest Manage. Sci.  2004,  60:  399 
  • 2d Wang S. Meades C. Wood G. Osnowski A. Anderson S. Yuill R. Thomas M. Mezna M. Jackson W. Midgley C. Griffiths G. Fleming I. Green S. McNae I. Wu S.-Y. McInnes C. Zheleva D. Walkinshaw MD. Fischer PM. J. Med. Chem.  2004,  47:  1662 
  • 2e Wagner O, Harries V, and De Kramer J.-J. inventors; DE 19827611  A1. 
  • 3 Shikhaliev KhS. Kryl’skii DV. Kovygin YuA. Verezhnikov VN. Russian J. Gen. Chem.  2005,  75:  294 
  • 4a Zanatta N. Flores DC. Madruga CC. Faoro D. Flores AFC. Bonacorso HG. Martins MAP. Synthesis  2003,  894 
  • 4b Adlington RM. Baldwin JE. Catterick D. Pritchard GJ. J. Chem. Soc., Perkin Trans. 1  1999,  855 
  • 5 Malherbe P, Masciadri R, Prinssen E, Spooren W, and Thomas AW. inventors; US  2005197337. 
  • 6 Baldwin JE. Pritchard GJ. Rathmell RF. J. Chem. Soc., Perkin Trans. 1  2001,  2906 
  • 7a Gabbutt CD. Hepworth JP. Heron BM. J. Chem. Soc., Perkin Trans. 1  1992,  2603 
  • 7b Sansebastiano L. Mosti L. Menozzi G. Schenone P. Muratore O. Petta A. Debbia F. Schito AP. Schito GC. Farmaco  1993,  48:  335 
  • 8a Giguère D. Patnam R. Bellefleur M.-A. St-Pierre C. Sato S. Roy R. Chem. Commun.  2006,  2379 
  • 8b Mosher MD. Natale NR. J. Heterocycl. Chem.  1995,  32:  779 
  • 8c Han X. Natale NR. J. Heterocycl. Chem.  2001,  38:  415 
  • 8d Han X. Li C. Rider KC. Blumenfeld A. Twamley B. Natale NR. Tetrahedron Lett.  2002,  43:  7673 
  • 8e Han X. Twamley B. Natale NR. J. Heterocycl. Chem.  2003,  40:  539 
  • 8f Li C. Twamley B. Natale NR. J. Heterocycl. Chem.  2008,  45:  259 
  • 9 Herrera A. Martínez-Alvarez R. Ramiro P. Almy J. Molro D. Sánchez A. Eur. J. Org. Chem.  2006,  3332 
  • 10 Adlington RM. Baldwin JE. Catterick D. Pritchard GJ. J. Chem. Soc., Perkin Trans. 1  1999,  855 
  • 11 Angiolini M. Bassini DF. Gude M. Menichincher M. Tetrahedron Lett.  2005,  46:  8749 
  • 12a Calvo L. González-Ortega A. Navarro R. Pérez M. Sañudo MC. Synthesis  2005,  3152 
  • 12b Labeeuw O. Phansavath P. Genêt J.-P. Tetrahedron Lett.  2004,  45:  7107 
  • 12c Hegde VB. Renga JM. Owen JM. Tetrahedron Lett.  2001,  42:  1847 
  • 13 Christl M. Huisgen R. Chem. Ber.  1973,  106:  3345 
  • 14 Note that bleach did not result in oxidation of the 2-(methyl-thio)pyrimidine moiety. For a related report, see: Tene Ghomsi JN. Ahabchane HH. Essassi EM. Phosphorus, Sulfur Silicon Relat. Elem.  2004,  179:  353 
  • 16 Lipinski CA. Lombardo F. Dominy BW. Feeney PJ. Adv. Drug Delivery Rev.  2001,  46:  3 
  • General Procedure for Bioassays
  • 19a

    The primary screen involved two high-throughput insect assays, both incorporating 96-well microtiter plates. The first assay was a 96-well high-throughput bioassay for beet armyworm (Spodoptera exigua: Lepidoptera) larvae, based on modifications of Lewer et al.(2006). Eggs of S. exigua were placed on top of artificial diet (100 mL) in each well of 96-well microtiter plate. The diet had been pretreated with test compounds (12 mg dissolved in 30 mL of DMSO-acetone-H2O mixture) layered on top of the diet using a Sagian (Bechman-Coulter, Fullerton, CA) liquid handling system and then allowed to dry for several hours. Infested plates were then covered with a layer sterile cotton batting and the plate lid, and then held in the dark at 29 ˚C (Lewer et al. 2006). Mortality was recoded at 6 d post-treatment. Each plate had six replicates. The second assay used the yellow fever mosquito (Aedes aegypti: Diptera). One-day old larvae of A. aegypti were pippetted into each well of a 96-well microtiter plate that had been pretreated with 6 mg (dissolved in 15 mL of DMSO-acetone-H2O mixture, which had been allowed to dry in the well) of the test compound. The microtiter plates, covered with a lid of prevent evaporation, were held 3 d at r.t., and then graded for mortality. There were six replicates per treatment.
    Compounds found to be active were further evaluated a larger format diet-based bioassay using 128-well diet trays (Bio-Serv, Frenchtown, NJ). Three-to-five-second instar larvae of either S. exigua or Helicoverpa zea (corn earworm: Lepidoptera) were placed in each well (3 mL) of the diet tray that had been previously filled with 1 mL of artificial diet to which 25 mg the test compound [dissolved in 50 mL of an acetone-H2O mixture (90:10)] had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adhesive cover, and held at 25 ˚C, 14:10 light/dark for 6 d. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged.

  • 19b Lewer P. Graupner PR. Hahn DR. Karr LL. Duebelbeis DO. Lira JM. Anzeveno PB. Fields SC. Gilbert JR. Pearce C. J. Nat. Prod.  2006,  69:  1506 
  • 20 Krieger RL. Feeny PP. Wilkinson CF. Science  1971,  172:  579 
15

Demeter, D., log Kow model developed at Dow AgroSciences, unpublished work

17

Representative Examples of 5
4-Methyl-6-(5-phenylisoxazol-3-yl)- N -propylpyrimidin-2-amine
¹H NMR (300 MHz, CDCl3): δ = 7.80 (m, 2 H), 7.42 (m,
3 H), 7.10 (s, 1 H), 7.00 (s, 1 H), 3.42 (m, 2 H), 2.31 (s, 3 H), 2.18 (s, 1 H), 1.62 (m, 2 H), 0.93 (m, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 170.9, 162.9, 162.7, 156.3, 130.6, 129.3, 127.5, 126.1, 106.8, 105.8, 98.7, 43.5, 23.3, 23.1, 11.8.
N -(Cyclopropylmethyl)-4-isopropyl-6-(5-phenylisoxazol-3-yl)pyrimidin-2-amine
¹H NMR (300 MHz, CDCl3): δ = 7.60 (m, 2 H), 7.24 (m,
3 H), 6.91 (s, 1 H), 6.84 (s, 1 H), 5.22 (br s, 1 H), 3.11 (m,
2 H), 2.64 (m, 1 H), 1.27 (d, J = 7.0 Hz, 6 H), 0.82 (m, 1 H), 0.30 (m, 2 H), 0.05 (m, 2 H). ¹³C NMR (75 MHz, CDCl3):
δ = 178.2, 170.9, 163.6, 162.8, 156.2, 130.6, 129.3, 127.5, 126.1, 104.4, 98.7, 46.8, 36.3, 21.9, 11.9, 3.7.
4-Isopropyl-6-(5-phenylisoxazol-3-yl)- N -propyl-pyrimidin-2-amine
¹H NMR (300 MHz, CDCl3): δ = 7.87 (m, 2 H), 7.50 (m,
3 H), 7.19 (s, 1 H), 7.11 (s, 1 H), 3.50 (m, 2 H), 2.91 (m, 1 H), 1.70 (m, 2 H), 1.30 (d, J = 7.2 Hz, 6 H), 1.02 (t, J = 6.2 Hz, 3 H); note: NH proton not detected. ¹³C NMR (75 MHz, CDCl3): δ = 170.9, 163.8, 162.6, 156.4, 130.6, 130.2, 129.3, 127.5, 126.1, 104.1, 98.7, 43.6, 36.1, 23.1, 21.9, 11.9.
4-[5-(4-Chlorophenyl)isoxazol-3-yl]-6-isopropyl- N -propyl-pyrimidin-2-amine
¹H NMR (300 MHz, CDCl3): δ = 7.80 (d, J = 8.7 Hz, 2 H), 7.48 (d, J = 8.7 Hz, 2 H), 7.16 (s, 1 H), 7.09 (s, 1 H), 5.90 (br s, 1 H), 3.48 (br s, 2 H), 2.90 (m, 1 H), 1.70 (m, 2 H), 1.32 (d, J = 7.2 Hz, 6 H), 1.03 (t, J = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 178.2, 170.9, 163.6, 162.8, 156.2, 130.6, 129.3, 127.5, 126.1, 104.4, 98.7, 46.8, 36.3, 21.9, 11.9, 3.7.

18

Representative Examples of 8
N -Cyclopentyl-3-[2-(2-methoxyethylamino)-6-methyl-pyrimidin-4-yl]isoxazole-5-carboxamide
¹H NMR (300 MHz, CDCl3): d = 7.42 (s, 1 H), 7.10 (s, 1 H), 6.55 (br s, 1 H), 5.53 (br s, 1 H), 4.41 (m, 1 H), 3.69-3.55 (m, 4 H), 3.38 (s, 3 H), 2.39 (s, 3 H), 2.13-2.04 (m, 2 H), 1.85-1.52 (m, 6 H). ¹³C NMR (75 MHz, CDCl3): d = 169.7, 164.3, 163.9, 162.8, 155.5, 154.9, 107.1, 106.2, 71.5, 59.0, 51.9, 41.4, 33.3, 24.4, 24.0.
N -Benzyl-3-[2-(cyclopentylamino)-6-methylpyrimidin-4-yl]isoxazole-5-carboxamide
¹H NMR (300 MHz, CDCl3): δ = 7.49 (s, 1 H), 7.35 (m, 5 H), 7.06 (br s, 2 H), 5.22 (d, J = 6.9 Hz, 1 H), 4.64 (d, J = 6.9 Hz, 2 H), 4.33 (m, 1 H), 2.37 (s, 3 H), 2.04 (m, 2 H), 1.72-1.24 (m, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 169.5, 163.9, 162.6, 162.4, 155.9, 154.8, 137.2, 129.1, 129.0, 128.2, 106.7, 106.5, 53.2, 43.8, 33.5, 24.5, 23.9.
N -(4-Methoxybenzyl)-3-[2-(2-methoxyethylamino)-6-methyl-pyrimidin-4-yl]isoxazole-5-carboxamide
¹H NMR (300 MHz, CDCl3): δ = 8.46 (br s, 1 H), 7.46 (s,
1 H), 7.30 (d, J = 8.7 Hz, 2 H), 7.09 (s, 1 H), 6.90 (d, J = 8.7 Hz, 2 H), 5.59 (br s, 1 H), 4.59 (d, J = 5.4 Hz, 2 H), 3.80 (s, 3 H), 3.69-3.56 (m, 4 H), 3.38 (s, 3 H), 2.39 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 169.6, 164.0, 163.8, 162.7, 159.6, 155.7, 154.9, 129.7, 129.2, 114.5, 107.1, 106.5, 70.4, 59.0, 55.6, 43.4, 41.4, 24.4.
3-[2-(Cyclopentylamino)-6-isopropylpyrimidin-4-yl]- N -(4-methoxybenzyl)isoxazole-5-carboxamide
¹H NMR (300 MHz, CDCl3): δ = 7.48 (s, 1 H), 7.29 (d, J = 7.5 Hz, 2 H), 7.08 (s, 1 H), 6.97 (br s, 1 H), 6.88 (d, J = 8.7 Hz, 2 H), 5.23 (br s, 1 H), 4.58 (d, J = 5.1 Hz, 2 H), 4.30 (m, 1 H), 3.79 (s, 3 H), 2.84 (m, 1 H), 2.06 (m, 2 H), 1.73-1.61 (m, 4 H), 1.45 (m, 2 H), 1.25 (d, J = 5.1 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 178.2, 164.1, 163.9, 162.5, 159.6, 155.8, 155.0, 129.7, 129.3, 114.5, 106.6, 104.2, 55.6, 53.3, 43.4, 36.3, 33.5, 24.0, 21.8.