Subscribe to RSS
DOI: 10.1055/s-0029-1219565
Microwave-Assisted Preparation of Quinolone and Quinoline Derivatives
Publication History
Publication Date:
02 March 2010 (online)
Abstract
Quinolinone derivatives can be obtained in microwave-assisted syntheses by reaction of aniline derivatives with acetylene dicarboxylic esters, a malonic acid diester or β-keto ester derivatives. The reaction proceeds under mild conditions in short reaction times. Two of the quinolinones were transformed into the corresponding 4-chloroquinolines either by conventional heating or in a microwave-assisted reaction. Further modifications resulted in the formation of the boron adduct or in an agglomerate. The latter was characterized by X-ray crystal structure analysis.
Key words
quinoline - quinolinone - one-pot synthesis - microwave
-
1a
Michael JP. Nat. Prod. Rep. 2001, 18: 543 -
1b
Balasubramanian M.Kelay JG. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW.Scriven EFV. Pergamon; Oxford: 1996. p.245 - 2
Polanski J.Zouhiri F.Jeanson L.Desmaele D.d’Angelo J.Mouscadet J.-F.Gieleciak R.Gasteiger J.Le Bret M. J. Med. Chem. 2002, 45: 4647 -
3a
Kacprzak K.Gawronski J. Synthesis 2001, 961 -
3b
Yoon TP.Jacobsen EN. Science 2003, 299: 1691 - 4
Hollingshead RGW. Oxine and its Derivatives Buttersworths; London: 1954. - 5
Albrecht M.Fiege M.Osetska O. Coord. Chem. Rev. 2008, 252: 812 - 6
Albrecht M. .Schiffers S.Osetska O.Raabe G.Wieland T.Russo L.Rissanen K. Eur. J. Org. Chem. 2007, 2850 -
7a
Abass M. Heterocycles 2005, 65: 901 -
7b
Kouznetsov VK.Vargas Méndez LY.Meléndez Gómez CM. Curr. Org. Chem. 2005, 9: 141 -
7c
Larsen LD.Kai D. Quinolines, In Science of Synthesis Georg Thieme Verlag; Stuttgart: 2005. -
7d
Skraup K. Ber. Dtsch. Chem. Ges. 1880, 13: 2086 -
7e
Mansake RHF.Kulka M. Org. React. 1953, 7: 59 -
7f
Friedländer P. Ber. Dtsch. Chem. Ges. 1882, 15: 2572 -
7g
Gould RG.Jacobs WA. J. Am. Chem. Soc. 1939, 61: 2890 -
8a
Kappe CO.Stadler A. Microwaves in Organic and Medicinal Chemistry Wiley-VCH; Weinheim: 2005. -
8b
Hamelin J.Bazureau J.-P.Texier-Boulet F. In Microwaves in Organic SynthesisLoupy A. Wiley-VCH; Weinheim: 2002. p.253 -
9a
Kidwai M.Misra P.Kumar R.Saxena RK.Gupta R.Bradoo S. Monatsh. Chem. 1998, 129: 961 -
9b
Sabitha G.Babu RS.Reddy BVS.Yadav JS. Synth. Commun. 1999, 29: 4403 -
9c
Perzyna A.Houssin R.Barbry D.Hénichart J.-P. Synlett 2002, 2077 -
9d
Ranu BC.Hajra A.Jana U. Tetrahedron 2003, 59: 813 -
9e
Ranu BC.Hajra A.Jana U. Tetrahedron Lett. 2000, 41: 531 -
9f
Gãinã L.Cristea C.Moldovan C.Porumb D.Surducan E.Deleanu C.Mahamoud A.Barbe J.Silberg IA. Int. J. Mol. Sci. 2007, 8: 70 -
9g
Jia C.-S.Zhang Z.Tu S.-J.Wang G.-W. Org. Biomol. Chem. 2006, 4: 104 -
9h
Theoclitou M.Robinson LA. Tetrahedron Lett. 2002, 43: 3907 -
9i
Yadav JS.Reddy VS.Rao RS.Naveenkumar V.Nagaiah K. Synthesis 2003, 1610 -
9j
Chaudhuri MK.Hussain S. J. Chem. Sci. 2006, 118: 199 -
9k
Duvelleroy D.Perrio C.Parisel C.Lasne M.-C. Org. Biomol. Chem. 2005, 3: 3794 -
9l
Alexandre F.-R.Berecibar A.Wrigglesworth R.Besson T. Tetrahedron 2003, 59: 1413 -
10a
Schramm OG.Oeser T.Kaiser M.Brun R.Müller TJJ. Synlett 2008, 359 -
10b For the synthesis of functionalized
quinolines, see:
Bernini R.Cacchi S.Fabrizi G.Filisti E.Sferrazza A. Synlett 2009, 1245 - 12
Zewge D.Chen C.Deer C.Dormer PG.Hughes DL. J. Org. Chem. 2007, 72: 4276 - 13
Lauer WM.Arnold RT.Tiffany B.Tinker J. J. Am. Chem. Soc. 1946, 68: 1268 - 14 For 10,
see:
Wright R.Gordon M. Synthesis 1984, 1058 -
15a For
16, see:
Stephen JML.Tonkin IM.Walker J. J. Chem. Soc. 1947, 1034 -
15b For 18, see:
Etter MC.Urbanczyk-Lipkowska Z.Zia-Ebrahimi M.Panunto TW. J. Am. Chem. Soc. 1990, 112: 8415 - 16
Agui H.Mitani T.Nakashita M.Nakagome T. J. Heterocycl. Chem. 1971, 8: 357
References and Notes
Microwave experiments were performed
using a CEM Discover BenchMate Plus microwave oven with IR temperature
detection. Preparation of
4: O-Anisidine
(0.123 g, 1.0 mmol), dimethyl acetylenedicarboxylate (0.156 g, 1.1 mmol)
and Ph2O (6 mL) were placed in a 10 mL vessel, which
was sealed with a septum. The flask was placed in the MW cavity
and was locked with the pressure device. MW irradiation at 120 ˚C
without air-cooling was used during the first 5 min of reaction
time, and then irradiation power was increased to 250 ˚C
for the next 15 min. After cooling to r.t., the reaction mixture
was diluted with n-hexane (150 mL).
A
brown oil or solid precipitated. Solvent was removed and the residue
was washed with n-hexane and recrystallized from
acetone-n-hexane to yield a
colourless crystalline solid in 54% yield. Characterization
of key products: The analytical data of 4,¹² 7
¹³ and 20
¹³ were
in agreement with literature data. Derivative 19:
Mp 146 ˚C. ¹H NMR (400 MHz,
CDCl3): δ = 8.32 (s, 1 H),
7.84 (dd, J = 8.5,
1.1 Hz, 1 H), 7.68 (dd, J = 8.5,
8.0 Hz, 1 H), 7.15 (dd, J = 8.0,
1.1 Hz, 1 H), 4.10 (s, 3 H), 4.05 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 165.0 (C),
156.1 (C), 146.1 (C), 143.7 (C), 140.1 (C), 130.1 (CH), 128.6 (C),
121.8 (CH), 115.4 (CH), 108.9 (CH), 56.3 (CH3), 53.2
(CH3). MS (EI, 70 eV): m/z (%) = 251.0(36) [M]+,
235.9 (100) [M - Me]+.
IR (KBr): 3094, 1721, 1611, 1557, 1498, 1470, 1448, 1334, 1259, 1204,
1139, 1108, 1009, 969, 896, 819, 784, 747 cm-¹.
Anal. Calcd for C12H10ClNO3˙1/3H2O
(257.7): C, 55.94; H, 4.17; N, 5.44. Found: C, 55.70; H, 4.10; N,
5.56.
CCDC 761359 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033, E-mail: deposit@ccdc.cam.ac.uk].