Am J Perinatol 2009; 26(9): 659-665
DOI: 10.1055/s-0029-1220793
© Thieme Medical Publishers

The Role of Complement in Neurodevelopmental Impairment following Neonatal Hypoxic-Ischemic Encephalopathy

Hany Aly1 , Mohamed T. Khashaba2 , Ayman Nada3 , Bothina M. Hasanen2 , Robert McCarter1 , Seth J. Schultz4 , Laura Gordon3 , Pamela W. Feldhoff4 , Herbert A. Lassiter4
  • 1Department of Pediatrics, the George Washington University and the Children's National Medical Center, Washington, DC
  • 2Department of Pediatrics, Mansoura University Children's Hospital, Mansoura, Egypt
  • 3Institute of Post Graduate Childhood Studies, Ain Shams University, Cairo, Egypt
  • 4Division of Neonatal Medicine and the Kasair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
Further Information

Publication History

Publication Date:
23 April 2009 (online)

ABSTRACT

Evidence has accumulated implicating complement activation in the pathogenesis of acute post-hypoxic-ischemic cerebral injury in infants who develop hypoxic-ischemic encephalopathy (HIE). However, the relationship between complement activation and subsequent neurological impairment is not known. We tested the hypothesis that in human neonates, post-hypoxic-ischemic complement activation within the central nervous system is positively associated with the acquisition of subsequent neurodevelopmental abnormalities. This prospective study included 18 full-term infants diagnosed with HIE following resuscitation at birth and seven control infants. Cerebrospinal fluid (CSF) samples were obtained from all infants in the first 24 hours of life as part of routine investigations to exclude sepsis and meningitis. Concentrations of terminal complement complexes (TCC), complement component 9 (C9), and albumin were quantified by enzyme-linked immunosorbent assay in all CSF samples. Neurological examination and Denver Developmental Screening Test II were performed at 6 and 12 months of life. Of the 18 HIE subjects, nine died, six survived with significant neurological impairment, and three had normal neurological outcomes. In the CSF of the 15 HIE infants who died or survived with abnormal outcomes, the mean concentration of TCC was increased compared with controls (p = 0.026) and the mean C9 concentration appeared to be decreased but the difference was not statistically significant (p = 0.056). Similar to the TCC concentration, the concentration of albumin in the CSF was significantly increased in infants with abnormal outcomes (p = 0.005). This study indicates that complement activation following resuscitation at birth, as manifested by increased TCC in the CNS, is positively correlated with the combination of the development of subsequent neurological sequelae and death. Further study incorporating larger sample sizes will be required to confirm this association. This step is essential before clinical trials of complement inhibitors can be justified in human neonates who suffer birth asphyxia.

REFERENCES

  • 1 Carli G, Reiger I, Evans N. One-year neurodevelopmental outcome after moderate newborn hypoxic ischaemic encephalopathy.  J Paediatr Child Health. 2004;  40 217-220
  • 2 Itoo B A, Al-Hawsawi Z M, Khan A H. Hypoxic ischemic encephalopathy. Incidence and risk factors in North Western Saudi Arabia.  Saudi Med J. 2003;  24 147-153
  • 3 Horn M, Schlote W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia.  Acta Neuropathol. 1992;  85 79-87
  • 4 Petito C K, Feldmann E, Pulsinelli W A, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest.  Neurology. 1987;  37 1281-1286
  • 5 Petito C K, Pulsinelli W A. Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes.  J Cereb Blood Flow Metab. 1984;  4 194-205
  • 6 Scolding N J, Morgan B P, Houston A et al.. Normal rat serum cytotoxicity against syngeneic oligodendrocytes. Complement activation and attack in the absence of anti-myelin antibodies.  J Neurol Sci. 1989;  89 289-300
  • 7 Singhrao S K, Neal J W, Rushmere N K, Morgan B P, Gasque P. Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis.  Am J Pathol. 2000;  157 905-918
  • 8 Cowell R M, Plane J M, Silverstein F S. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats.  J Neurosci. 2003;  23 9459-9468
  • 9 Imm M D, Feldhoff P W, Feldhoff R C, Lassiter H A. The administration of complement component C9 augments post-ischemic cerebral infarction volume in neonatal rats.  Neurosci Lett. 2002;  325 175-178
  • 10 Lassiter H A. The role of complement in neonatal hypoxic-ischemic cerebral injury.  Clin Perinatol. 2004;  31 117-127
  • 11 Lindsberg P J, Ohman J, Lehto T et al.. Complement activation in the central nervous system following blood-brain barrier damage in man.  Ann Neurol. 1996;  40 587-596
  • 12 Schultz S J, Aly H, Hasanen B M et al.. Complement component 9 activation, consumption, and neuronal deposition in the post-hypoxic-ischemic central nervous system of human newborn infants.  Neurosci Lett. 2005;  378 1-6
  • 13 Gilstrap LC, Oh W Guidelines for Perinatal Care. In. 5th ed. Elk Grove Village, IL; American Academy of Pediatrics & American Colloge of Obstetrics and Gynecology 2002
  • 14 Sarnat H B, Sarnat M S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study.  Arch Neurol. 1976;  33 696-705
  • 15 Frankenburg W K, Dodds J B. The Denver developmental screening test.  J Pediatr. 1967;  71 181-191
  • 16 Matsell D G, Roy III S, Tamerius J D et al.. Plasma terminal complement complexes in acute poststreptococcal glomerulonephritis.  Am J Kidney Dis. 1991;  17 311-316
  • 17 del Zoppo G, Ginis I, Hallenbeck J M et al.. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia.  Brain Pathol. 2000;  10 95-112
  • 18 Volanakis J EFM. The human complement system in health and disease. In: Dekker M New York; Marcel Dekker 1998
  • 19 del Zoppo G J. Microvascular responses to cerebral ischemia/inflammation.  Ann N Y Acad Sci. 1997;  823 132-147
  • 20 Volpe J. Neurology of the Newborn. 4th ed. Philadelphia; W.B. Saunders 2001
  • 21 Plumb M ESJ. Proteins of the membrane attack complex. In: Volanakis JE, Frank MM The Human Complement System in Health and Disease. New York; Marcel Dekker 1998: 119-148
  • 22 Lipton P. Ischemic cell death in brain neurons.  Physiol Rev. 1999;  79 1431-1568
  • 23 Weisman H F, Bartow T, Leppo M K et al.. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis.  Science. 1990;  249 146-151
  • 24 Vakeva A P, Agah A, Rollins S A et al.. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy.  Circulation. 1998;  97 2259-2267
  • 25 Lindsay T F, Hill J, Ortiz F et al.. Blockade of complement activation prevents local and pulmonary albumin leak after lower torso ischemia-reperfusion.  Ann Surg. 1992;  216 677-683
  • 26 Hill J, Lindsay T F, Ortiz F et al.. Soluble complement receptor type 1 ameliorates the local and remote organ injury after intestinal ischemia-reperfusion in the rat.  J Immunol. 1992;  149 1723-1728
  • 27 Eppinger M J, Deeb G M, Bolling S F, Ward P A. Mediators of ischemia-reperfusion injury of rat lung.  Am J Pathol. 1997;  150 1773-1784
  • 28 Brock R W, Nie R G, Harris K A, Potter R F. Kupffer cell-initiated remote hepatic injury following bilateral hindlimb ischemia is complement dependent.  Am J Physiol Gastrointest Liver Physiol. 2001;  280 G279-G284
  • 29 Spain D A, Fruchterman T M, Matheson P J et al.. Complement activation mediates intestinal injury after resuscitation from hemorrhagic shock.  J Trauma. 1999;  46 224-233
  • 30 Pemberton M, Anderson G, Vetvicka V, Justus D E, Ross G D. Microvascular effects of complement blockade with soluble recombinant CR1 on ischemia/reperfusion injury of skeletal muscle.  J Immunol. 1993;  150 5104-5113
  • 31 Hill J H, Ward P A. The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats.  J Exp Med. 1971;  133 885-900
  • 32 Huang J, Kim L J, Mealey R et al.. Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein.  Science. 1999;  285 595-599
  • 33 Van Beek J, Chan P, Bernaudin M et al.. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse.  Glia. 2000;  31 39-50
  • 34 Vasthare U S, Barone F C, Sarau H M et al.. Complement depletion improves neurological function in cerebral ischemia.  Brain Res Bull. 1998;  45 413-419
  • 35 Xiong Z Q, Qian W, Suzuki K, McNamara J O. Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration.  J Neurosci. 2003;  23 955-960
  • 36 Ten V S, Sosunov S A, Mazer S P et al.. C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice.  Stroke. 2005;  36 2244-2250
  • 37 Figueroa E, Gordon L E, Feldhoff P W, Lassiter H A. The administration of cobra venom factor reduces post-ischemic cerebral injury in adult and neonatal rats.  Neurosci Lett. 2005;  380 48-53
  • 38 Reviewers CIGA . Human albumin administration in critically ill patients: systematic review of randomized controlled trials. Cochrane Injuries Group Albumin Reviewers.  BMJ. 1998;  317 235-240
  • 39 Kattwinkel J Neonatal Resuscitation Textbook. 5th ed. Elk Grove Village, IL; American Academy of Pediatrics and American Heart Association 2006
  • 40 Stevens R W, Elmendorf D, Gourly M, Stroebel E, Gaafar H. Application of fluoroimmunoassay to cerebrospinal fluid immunoglobulin G and albumin.  J Clin Microbiol. 1979;  10 346-350
  • 41 Hallioglu O, Topaloglu A K, Zenciroglu A, Duzovali O, Yilgor E, Saribas S. Denver developmental screening test II for early identification of the infants who will develop major neurological deficit as a sequelae of hypoxic-ischemic encephalopathy.  Pediatr Int. 2001;  43 400-404

Hany AlyM.D. 

900 23rd Street, NW

Suite G-2092, Washington, DC 20037

Email: haly@mfa.gwu.edu