Synlett 2011(3): 373-377  
DOI: 10.1055/s-0030-1259323
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Efficient Cadmium-Catalyzed Three-Component Coupling of an Aldehyde, Alkyne, and Amine via C-H Activation under Microwave Conditions

Dushyant Singh Raghuvanshi, Krishna Nand Singh*
Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
Fax: +91(542)2368127; e-Mail: knsinghbhu@yahoo.co.in;
Further Information

Publication History

Received 25 October 2010
Publication Date:
13 January 2011 (online)

Abstract

The first use of Cd²+ as catalyst for a facile three-component coupling of an aldehyde, alkyne, and amine has been demonstrated to synthesize propargylamines under microwave irradiation in chlorobenzene without the use of a co-catalyst or activator in the absence of inert atmosphere. This method has been proved to be applicable to a wide range of substrates.

    References and Notes

  • 1a D’Souza DM. Muller TJJ. Chem. Soc. Rev.  2007,  36:  1095 
  • 1b Multicomponent Reactions   Zhu J. Bienayme H. Wiley; Weinheim: 2005. 
  • 2a Dyker G. Angew. Chem. Int. Ed.  1999,  38:  1698 
  • 2b Naota T. Takaya H. Murahashi SI. Chem. Rev.  1998,  98:  2599 
  • 2c Konishi M. Ohkuma H. Tsuno T. Oki T. VanDuyne GD. Clardy J. J. Am. Chem. Soc.  1990,  112:  3715 
  • 2d Naoi M. Maruyama W. Youdim MBH. Yu P. Boulton AA. Inflammopharmacology  2003,  11:  175 
  • 3a Zani L. Bolm C. Chem. Commun.  2006,  4263 
  • 3b Wei C. Li Z. Li C.-J. Synlett  2004,  1472 
  • 4a Wakefield BJ. In Organolithium Methods in Organic Synthesis   Academic Press; London: 1988.  Chap. 3. p.32 
  • 4b Wakefield BJ. Organomagnesium Methods in Organic Synthesis   Academic Press; London: 1995.  Chap. 3. p.46 
  • 5a Harada T. Fujiwara T. Iwazaki K. Oku A. Org. Lett.  2000,  2:  1855 
  • 5b Rosas N. Sharma P. Alvarez C. Gomez E. Gutierrez Y. Mendez M. Toscano RA. Maldonado LA. Tetrahedron Lett.  2003,  44:  8019 
  • 5c Ding C.-H. Chen D.-D. Luo Z.-B. Dai L.-X. Hou X.-L. Synlett  2006,  1272 
  • 6a Chen W.-W. Nauyen RV. Li C.-J. Tetrahedron Lett.  2009,  50:  2895 
  • 6b Sreedhar B. Suresh Kumar A. Reddy PS. Tetrahedron Lett.  2010,  51:  1891 
  • 7a Lee KY. Lee CG. Na JE. Kim JN. Tetrahedron Lett.  2005,  46:  69 
  • 7b Zani L. Alesi S. Cozzi PG. Bolm C. J. Org. Chem.  2006,  71:  1558 
  • 7c Ramu E. Varala R. Sreelatha N. Adapa SR. Tetrahedron Lett.  2007,  48:  7184 
  • 7d Kantam ML. Balasubrahmanyam V. Kumar KBS. Venkanna GT. Tetrahedron Lett.  2007,  48:  7332 
  • 8a Shi L. Tu Y.-Q. Wang M. Zhang F.-M. Fan C.-A. Org. Lett.  2004,  6:  1001 
  • 8b Huma HZS. Halder R. Karla SS. Das J. Iqbal J. Tetrahedron Lett.  2002,  43:  6485 
  • 8c Kabalka GW. Wang L. Pagni RM. Synlett  2001,  676 
  • 8d Wei C. Li C.-J. J. Am. Chem. Soc.  2002,  124:  5638 
  • 8e Wei C. Mague JT. Li CJ. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5749 
  • 8f Gommarman N. Koradin C. Polborn K. Knochel P. Angew. Chem. Int. Ed.  2003,  42:  5763 
  • 8g Colombo F. Benaglia M. Orlandi S. Usuelli F. J. Mol. Catal. A: Chem.  2006,  260:  128 
  • 8h Gommermann N. Knochel P. Chem. Eur. J.  2006,  12:  4380 
  • 8i Bisai A. Singh VK. Org. Lett.  2006,  8:  2405 
  • 8j Li P. Wang L. Tetrahedron  2007,  63:  5455 
  • 8k Park SB. Alper H. Chem. Commun.  2005,  1315 
  • 8l Choudary BM. Sridhar C. Kantam ML. Sreedhar B. Tetrahedron Lett.  2004,  45:  7319 
  • 8m Wang M. Li P. Wang L. Eur. J. Org. Chem.  2008,  2255 
  • 8n Sreedhar B. Reddy PS. Krishna CSV. Babu PV. Tetrahedron Lett.  2007,  48:  7882 
  • 8o Likhar PR. Roy S. Roy M. Subhas MS. Kantam ML. De R L. Synlett  2007,  2301 
  • 8p Kantam ML. Yadav J. Laha S. Jha S. Synlett  2009,  1791 
  • 8q Kantam ML. Laha S. Yadav J. Bhargava S. Tetrahedron Lett.  2008,  49:  3083 
  • 8r Kidwai M. Bansal V. Mishra NK. Kumar A. Mozumdar S. Synlett  2007,  1581 
  • 8s Aliaga MJ. Ramon DJ. Yus M. Org. Biomol. Chem.  2010,  8:  43 
  • 8t Patil MK. Keller M. Reddy BM. Pale P. Sommer J. Eur. J. Org. Chem.  2008,  4440 
  • 9 Li CJ. Wei C. Chem. Commun.  2002,  268 
  • 10a Wei C. Li Z. Li C.-J. Org. Lett.  2003,  5:  4473 
  • 10b Li Z. Wei C. Chen L. Varma RS. Li C.-J. Tetrahedron Lett.  2004,  45:  2443 
  • 10c Reddy KM. Babu NS. Prasad PSS. Lingaiah N. Tetrahedron Lett.  2006,  47:  7563 
  • 10d Zhang X. Corma A. Angew. Chem. Int. Ed.  2008,  47:  4358 
  • 10e Li P. Wang L. Zhang Y. Wang M. Tetrahedron Lett.  2008,  49:  6650 
  • 10f Yan W. Wang R. Xu Z. Xu J. Lin L. Shen Z. Zhou Y. J. Mol. Catal. A: Chem.  2006,  255:  81 
  • 10g Wang S. He X. Song L. Wang Z. Synlett  2009,  447 
  • 11a Zhang Y. Li P. Wang M. Wang L. J. Org. Chem.  2009,  74:  4364 
  • 11b Jadav JS. Reddy BVS. Gopal AVH. Patil KS. Tetrahedron Lett.  2009,  50:  3993 
  • 12a Fischer C. Carreira EM. Org. Lett.  2001,  3:  4319 
  • 12b Sakaguchi S. Kubo T. Ishii Y. Angew. Chem. Int. Ed.  2001,  40:  2534 
  • 12c Sakaguchi S. Mizuta T. Furuwan M. Kubo T. Ishii Y. Chem. Commun.  2004,  1638 
  • 13a Wei C. Li C.-J. J. Am. Chem. Soc.  2003,  125:  9584 
  • 13b Lo VK.-Y. Liu Y. Wong M.-K. Che C.-M. Org. Lett.  2006,  8:  1529 
  • 13c Kantam ML. Prakash BV. Reddy CRV. Sreedhar B. Synlett  2005,  2329 
  • 14 Hua LP. Lei W. Chin. J. Chem.  2005,  23:  1076 
  • 15 Namitharan K. Pitchumani K. Eur. J. Org. Chem.  2010,  411 
  • 16a Leadbeater NE. Torenius HM. Tye H. Mol. Diversity  2003,  7:  135 
  • 16b Sreedhar B. Reddy PS. Prakash BV. Ravindra A. Tetrahedron Lett.  2005,  46:  7019 
  • 17a Loupy A. In Microwaves in Organic Synthesis   2nd ed.:  Wiley-VCH; Weinheim: 2006. 
  • 17b Caddick S. Fitzmaurice R. Tetrahedron  2009,  65:  3325 
  • 17c Dallinger D. Kappe CO. Chem. Rev.  2007,  107:  2563 
  • 17d Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 17e Kappe CO. Stadler A. In Microwaves in Organic and Medicinal Chemistry   Wiley-VCH; Weinheim: 2005.  p.182 
  • 17f Shore G. Morin S. Organ MG. Angew. Chem. Int. Ed.  2006,  45:  276 
  • 17g Comer E. Organ MG. J. Am. Chem. Soc.  2005,  127:  8160 
  • 18a Raghuvanshi DS. Singh KN. ARKIVOC  2010,  (x):  305 
  • 18b Singh KN. Singh SK. ARKIVOC  2009,  (xiii):  153 
  • 18c Singh SK. Singh KN. J. Heterocycl. Chem.  2010,  47:  194 
  • 18d Raghuvanshi DS. Singh KN.
    J. Heterocycl. Chem  2010,  47:  1323 
  • 19a Narsaiah AV. Basak AK. Nagaiah K. Synthesis  2004,  1253 
  • 19b Saito M. Nakajima M. Hashimoto S. Chem. Commun.  2000,  1851 
  • 21 Barr D. Edwards AJ. Raithby PR. Rennie M.-A. Verhorevoort K. Wright DS. Chem. Commun.  1994,  1627 
20

General Procedure for the Synthesis of Propargylamines Aldehyde (1 mmol), amine (1.1 mmol), alkyne (1.2 mmol), CdI2 (7 mol%), and chlorobenzene (2 mL) were placed in a sealed pressure-regulation 10 mL pressurized vial with ‘snap-on’ cap, and the mixture was irradiated in a single-mode microwave synthesis system at 300 W and 130 ˚C for 7-8 min. After completion of the reaction (as monitored by TLC), the solvent was evaporated under vacuum. Water (20 mL) was added to the reaction mixture, and the product was extracted with EtOAc (3 × 10 mL). The combined organic phases were dried over anhyd MgSO4, filtered, and the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (EtOAc-hexane, 1:9) to afford the pure propargylamines.
Representative Data
4-(1,3-Diphenylprop-2-ynyl)morpholine (4a) FT-IR (KBr): 2935, 2756, 1590, 1490, 1451, 1319, 1152, 757, 694 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.61 (d, J = 7.2 Hz, 2 H), 7.49 (m, 2 H), 7.39-7.25 (m, 6 H), 4.78 (s, 1 H), 3.76-3.72 (m, 4 H), 2.64-2.61 (m, 4 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 137.7, 131.7, 128.5, 128.2, 128.3, 128.0, 127.7, 122.9, 88.4, 84.9, 67.1, 62.0, 49.8. Anal. Calcd for C19H19NO: C, 82.28; H, 6.90; N, 5.05. Found: C, 82.32; H, 6.82; N, 5.12.