Klin Monbl Augenheilkd 2011; 228(12): 1073-1078
DOI: 10.1055/s-0031-1281711
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

MR-Mikroskopie des humanen Auges

MR Microscopy of the Human EyeS. Langner1 , P.-C. Krueger1 , O. Stachs2 , N. Hosten1
  • 1Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald
  • 2Augenklinik Universität Rostock, Universität Rostock
Further Information

Publication History

Eingegangen: 2.8.2011

Angenommen: 16.8.2011

Publication Date:
17 November 2011 (online)

Zusammenfassung

Die Ultra-Hochfeld-MR-Mikroskopie ist ein neues bildgebendes Verfahren, das nicht invasiv die hochauflösende verzerrungsfreie Darstellung der Strukturen des humane Auges ermöglicht. Dieser Übersichtsartikel liefert einen Überblick über die Methodik der MR-Mikroskopie und ihren Stellenwert im Vergleich zu anderen ophthalmologischen Verfahren. Die MR-mikroskopische Anatomie des humanen Auges mit Korrelation zur Histologie wird beschrieben. Exemplarische Anwendungen im Rahmen ophthalmologisch-experimenteller Fragestellungen werden diskutiert.

Abstract

Ultra-high-field MR microscopy is a novel, non-invasive imaging technique to explore the strcutures of the human eye without optical distorsions. This review aims to provide an insight into the technique of the method. The normal MR microscopic anatomy of the human eye with correlations to histology is demonstrated. The use of MR microscopy in ther experimental ophthalmological setting is discussed.

Literatur

  • 1 Wolffsohn J S, Peterson R C. Anterior ophthalmic imaging.  Clin Exp Optom. 2006;  89 (4) 205-214
  • 2 Fink W. Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing.  J Biomed Opt. 2005;  10 (2) 024 003
  • 3 Linnola R J, Findl O, Hermann B et al. Intraocular lens-capsular bag imaging with ultrahigh-resolution optical coherence tomography Pseudophakic human autopsy eyes.  J Cataract Refract Surg. 2005;  31 (4) 818-823
  • 4 Foster F S, Pavlin C J, Harasiewicz K A et al. Advances in ultrasound biomicroscopy.  Ultrasound Med Biol. 2000;  26 (1) 1-27
  • 5 Stachs O, Martin H, Behrend D et al. Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation.  Graefes Arch Clin Exp Ophthalmol. 2006;  244 (7) 836-844
  • 6 Langner S, Martin H, Terwee T et al. 7.1T MRI to assess the anterior segment of the eye.  Investigative ophthalmology & visual science (Research Support, Non-U. S. Gov’t). 2010;  51 (12) 6575-6581
  • 7 Georgouli T, James T, Tanner S et al. High-resolution microscopy coil MR-Eye.  Eye. 2008;  22 (8) 994-996
  • 8 Hermans E A, Pouwels P J, Dubbelman M et al. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study.  Invest Ophthalmol Vis Sci. 2009;  50 (1) 281-289
  • 9 Richdale K, Wassenaar P, Teal Bluestein K et al. 7 Tesla MR imaging of the human eye in vivo.  J Magn Reson Imaging. 2009;  30 (5) 924-932
  • 10 Trick G L, Edwards P A, Desai U et al. MRI retinovascular studies in humans: research in patients with diabetes.  NMR Biomed. 2008;  21 (9) 1003-1012
  • 11 Hosten N, Lemke A, Sander B et al. MRT of the eye: the normal anatomy and detection of the smallest lesions with a high-resolution surface coil.  Fortschr Röntgenstr. 1996;  164 (2) 126-131
  • 12 Lemke A J, Hosten N, Foerster P I et al. Using high resolution sectional imaging in diagnosis of the eye and orbit.  Ophthalmologe. 2001;  98 (5) 435-445
  • 13 Lemke A J, Kazi I, Landeck L M et al. Differential diagnosis of intraconal orbital masses using high-resolution MRI with surface coils in 78 patients.  Fortschr Röntgenstr. 2004;  176 (10) 1436-1446
  • 14 Stroszczynski C, Hosten N, Bornfeld N et al. Choroidal hemangioma: MR findings and differentiation from uveal melanoma.  AJNR Am J Neuroradiol. 1998;  19 (8) 1441-1447
  • 15 Lemke A J, Hosten N, Wiegel T et al. Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution MRI using a surface coil.  Eur Radiol. 2001;  11 (12) 2593-2601
  • 16 Strenk S A, Semmlow J L, Strenk L M et al. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study.  Invest Ophthalmol Vis Sci. 1999;  40 (6) 1162-1169
  • 17 Kneeland J B, Hyde J S. High-resolution MR imaging with local coils.  Radiology (Review). 1989;  171 (1) 1-7
  • 18 Schueler A O, Hosten N, Bechrakis N E et al. High resolution magnetic resonance imaging of retinoblastoma.  Br J Ophthalmol. 2003;  87 (3) 330-335
  • 19 Singh K D, Logan N S, Gilmartin B. Three-dimensional modeling of the human eye based on magnetic resonance imaging.  Invest Ophthalmol Vis Sci. 2006;  47 (6) 2272-2279
  • 20 Lemke A J, Alai-Omid M, Hengst S A et al. Eye imaging with a 3.0-T MRI using a surface coil – a study on volunteers and initial patients with uveal melanoma.  Eur Radiol. 2006;  16 (5) 1084-1089
  • 21 Christoforidis G A, Yang M, Kontzialis M S et al. High resolution ultra high field magnetic resonance imaging of glioma microvascularity and hypoxia using ultra-small particles of iron oxide.  Invest Radiol. 2009;  44 (7) 375-383
  • 22 Poser B A, Koopmans P J, Witzel T et al. Three dimensional echo-planar imaging at 7 Tesla.  Neuroimage. 2010;  51 (1) 261-266
  • 23 Thomas B P, Welch E B, Niederhauser B D et al. High-resolution 7 T MRI of the human hippocampus in vivo.  J Magn Reson Imaging. 2008;  28 (5) 1266-1272
  • 24 Stachs O, Langner S, Terwee T et al. In vivo 7.1T magnetic resonance imaging to assess the lens geometry in rabbit eyes 3 years after lens-refilling surgery.  Journal of cataract and refractive surgery (Research Support, Non-U. S. Gov’t). 2011;  37 (4) 749-757
  • 25 Fatterpekar G M, Delman B N, Boonn W W et al. MR microscopy of normal human brain.  Magn Reson Imaging Clin N Am. 2003;  11 (4) 641-653
  • 26 Bammer R. Basic principles of diffusion-weighted imaging.  Eur J Radiol. 2003;  45 (3) 169-184
  • 27 Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research.  Neuron. 2006;  51 (5) 527-539
  • 28 Berkowitz B A. MRI of retinal and optic nerve physiology.  NMR Biomed. 2008;  21 (9) 927
  • 29 Berkowitz B A, Roberts R. Prognostic MRI biomarkers of treatment efficacy for retinopathy.  NMR Biomed. 2008;  21 (9) 957-967
  • 30 Henning T D, Saborowski O, Golovko D et al. Cell labeling with the positive MR contrast agent Gadofluorine M.  Eur Radiol. 2007;  17 (5) 1226-1234
  • 31 Freddo T F, Patz S, Arshanskiy Y. Pilocarpine’s effects on the blood-aqueous barrier of the human eye as assessed by high-resolution, contrast magnetic resonance imaging.  Exp Eye Res. 2006;  82 (3) 458-464
  • 32 Townsend K A, Wollstein G, Schuman J S. Clinical application of MRI in ophthalmology.  NMR Biomed. 2008;  21 (9) 997-1002
  • 33 Metcalf M, Xu D, Okuda D T et al. High-resolution phased-array MRI of the human brain at 7 tesla: initial experience in multiple sclerosis patients.  J Neuroimaging. 2010;  20 (2) 141-147

Dr. Soenke Langner

Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald

Ferdinand-Sauerbruch-Str. 1

17489 Greifswald

Phone:  ++ 49/38 34/86 69 60

Fax:  ++ 49/38 34/86 70 91

Email: soenke.langner@uni-greifswald.de