Subscribe to RSS
DOI: 10.1055/s-0035-1561486
Gold-Catalyzed Rearrangement of (Silylcyclopropenyl)methyl Ethers into (Silylmethylene)cyclopropanes
Publication History
Received: 13 May 2016
Accepted after revision: 08 June 2016
Publication Date:
27 July 2016 (online)
Dedicated to the memory of Professor Jean-François Normant, a remarkable mentor and scientific personality.
Abstract
Methoxymethyl ethers derived from 2-(dimethylphenylsilyl)cycloprop-1-enyl carbinols undergo gold-catalyzed rearrangement leading to [(Z)-(dimethylphenylsilyl)methylene]cyclopropanes in moderate to high yields with methyl formate as a byproduct. This transformation proceeds by initial regioselective ring opening of the three-membered ring leading to an α-silyl vinyl gold carbenoid. This latter organogold species evolves by 1,5-hydride transfer, which triggers subsequent rearrangement involving loss of methyl formate, 2π-electrocyclization of the resulting allylic cation, and elimination of the metal to regenerate the catalyst.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561486.
- Supporting Information
-
References
- 1a Binger P, Büch HM. Top. Curr. Chem. 1987; 135: 77
- 1b Fox JM, Yan N. Curr. Org. Chem. 2005; 9: 719
- 1c Nakamura M, Isobe H, Nakamura E. Chem. Rev. 2003; 103: 1295
- 1d Rubin M, Rubina M, Gevorgyan V. Synthesis 2006; 1221
- 1e Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 1f Marek I, Simaan S, Masarwa A. Angew. Chem. Int. Ed. 2007; 46: 7364
- 1g Miege F, Meyer C, Cossy J. Beilstein J. Org. Chem. 2011; 7: 717
- 1h Zhu Z.-B, Wei Y, Shi M. Chem. Soc. Rev. 2011; 40: 5534
- 1i Archambeau A, Miege F, Cossy J, Meyer C In The Chemistry of Organogold Complexes . Rappoport Z, Liebman JF, Marek I. Wiley; Chichester: 2014: 631
- 1j Rubin M, Ryabchuk PG. Chem. Heterocycl. Compd. 2012; 48: 126
- 1k Müller DS, Marek I. Chem. Soc. Rev. 2016; in press DOI: 10.1039/c5cs00897b
- 2a Zhang F.-G, Eppe G, Marek I. Angew. Chem. Int. Ed. 2016; 55: 714
- 2b Archambeau A, Nguyen D.-V, Meyer C, Cossy J. Chem. Eur. J. 2016; 22: 6100
- 2c Nakano T, Endo K, Ukaji Y. Chem. Asian J. 2016; 11: 713
- 2d Le PQ, May JA. J. Am. Chem. Soc. 2015; 137: 12219
- 2e Archambeau A, Miege F, Meyer C, Cossy J. Acc. Chem. Res. 2015; 48: 1021
- 2f Müller DS, Marek I. J. Am. Chem. Soc. 2015; 137: 15414
- 2g González MJ, González J, López LA, Vicente R. Angew. Chem. Int. Ed. 2015; 54: 12139
- 2h Xu X, Deng Y, Yim DN, Zavalij PY, Doyle MP. Chem. Sci. 2015; 6: 2196
- 2i Zhang H, Wang B, Yi H, Zhang Y, Wang J. Org. Lett. 2015; 17: 3322
- 2j Sawano T, Hashizume M, Nishimoto S, Ou K, Nishimura T. Org. Lett. 2015; 17: 2630
- 2k Parra A, Amenós L, Guisán-Ceinos M, López A, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2014; 136: 15833
- 2l Tian B, Liu Q, Tong X, Tian P, Lin G.-Q. Org. Chem. Front. 2014; 1: 1116
- 2m Zhang H, Li C, Xie G, Wang B, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 6286
- 3 Zhu Z.-B, Shi M. Chem. Eur. J. 2008; 14: 10219
- 4 Bauer JT, Hadfield MS, Lee A.-L. Chem. Commun. 2008; 6405
- 5a Li C, Zeng Y, Wang J. Tetrahedron Lett. 2009; 50: 2956
- 5b Hadfield MS, Bauer JT, Glen PE, Lee A.-L. Org. Biomol. Chem. 2010; 8: 4090
- 5c Seraya E, Slack E, Ariafard A, Yates BF, Hyland CJ. T. Org. Lett. 2010; 12: 4768
- 5d Hadfield MS, Lee A.-L. Chem. Commun. 2011; 47: 1333
- 5e Mudd RJ, Young PC, Jordan-Hore JA, Rosair GM, Lee A.-L. J. Org. Chem. 2012; 77: 7633
- 5f Young PC, Hadfield MS, Arrowsmith L, Macleod KM, Mudd RJ, Jordan-Hore JA, Lee A.-L. Org. Lett. 2012; 14: 898
- 6a Zhou Y, Trewyn BG, Angelici RJ, Woo LK. J. Am. Chem. Soc. 2009; 131: 11734
- 6b Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard WA. III, Toste FD. Nat. Chem. 2009; 1: 482
- 6c Miege F, Meyer C, Cossy J. Org. Lett. 2010; 12: 4144
- 6d Miege F, Meyer C, Cossy J. Chem. Eur. J. 2012; 18: 7810
- 7a Baird MS, Hussain HH, Nethercott W. J. Chem. Soc., Perkin Trans. 1 1986; 1845
- 7b Simaan S, Masarwa A, Zohar E, Stanger A, Bertus P, Marek I. Chem. Eur. J. 2009; 15: 8449
- 8 Rajabi NA, Atashgah MJ, BabaAhmadi R, Hyland C, Ariafard A. J. Org. Chem. 2013; 78: 9553
- 9 For monosubstituted cyclopropenes possessing a substituent able to stabilize an adjacent positive charge, theoretical studies show that binding of a cationic gold–phosphine complex occurs in an unsymmetrical fashion through the unsubstituted carbon and subsequent kinetically controlled ring opening leads to the less substituted gold carbenoid, see: Hadfield MS, Häller LJ. L, Lee A.-L, Macgregor SA, O’Neill JA. T, Watson AM. Org. Biomol. Chem. 2012; 10: 4433
- 10 Wierschke SG, Chadrasekhar J, Jorgensen WL. J. Am. Chem. Soc. 1985; 107: 1496
- 11a Li J, Sun C, Demerzhan S, Lee D. J. Am. Chem. Soc. 2011; 133: 12964
- 11b For a DFT study of the mechanism which involves a [1,2]-silyl shift leading to a cyclopropyl platinum carbenoid intermediate, see: Fang R, Yang L, Wang Q. Organometallics 2012; 31: 4020
- 12 The configuration of the (silylmethylene)cyclopropanes resulting from the gold-catalyzed rearrangement of (silylcyclopropenyl)methyl ethers was assigned by analogy with the results observed in the case of substrates 9a, 9b and 9c. The Z-configuration of the resulting products 10a, 10b, and 10c was assigned by NMR (NOESY), see Supporting Information.
- 13 For a review on gold-catalyzed C(sp3)–H bond functionalization including processes mediated by a 1,5-hydride shift, see: Xie J, Pan C, Abdukader A, Zhu C. Chem. Soc. Rev. 2014; 43: 5245
- 14 After elimination of acrolein and benzaldehyde in 5a and 5b, respectively, the resulting intermediate species formally possesses a zwitterionic character (allyl cation and allyl metal).
- 15 Bolte B, Odabachian Y, Gagosz F. J. Am. Chem. Soc. 2010; 132: 7294
- 16 Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
- 17 Basheer A, Masaaki M, Marek I. Org. Lett. 2011; 13: 4076
- 18 Mengel A, Reiser O. Chem. Rev. 1999; 99: 1191
- 19 Lemière G, Gandon V, Agenet N, Goddard J.-P, de Kozak A, Aubert C, Fensterbank L, Malacria M. Angew. Chem. Int. Ed. 2006; 45: 7596
- 20 Mézailles N, Ricard L, Gagosz F. Org. Lett. 2005; 7: 4133
- 21 Nieto-Oberhuber C, López S, Muñoz MP, Cárdenas DJ, Buñuel E, Nevado C, Echavarren AM. Angew. Chem. Int. Ed. 2005; 44: 6146
- 22 Control experiments revealed that (silylmethylene)cyclopropane 10a reacted further in the presence of the phosphine gold catalysts and evolved to numerous (unidentified) products. Monitoring the reaction temperature did not improve the results.
- 23 Hashmi AS. K, Weyrauch JP, Rudolph M, Kuperjovic E. Angew. Chem. Int. Ed. 2004; 43: 6545
- 24a Li C, Zeng Y, Zhang H, Feng J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 6413
- 24b Zhou Q, Li Y. J. Am. Chem. Soc. 2014; 136: 1505 ; by contrast, an alkynylsilane was compatible with the Pt-catalyzed isomerization of silylcyclopropenes into silylallenes, see ref. 11
- 25a Allen FH. Tetrahedron 1982; 38: 645
- 25b Fattahi A, McCarthy RE, Ahmad MR, Kass SR. J. Am. Chem. Soc. 2003; 125: 11746
- 26 Matsumura K, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1997; 119: 8738
- 27 Yamakawa M, Yamada I, Noyori R. Angew. Chem. Int. Ed. 2001; 40: 2818
- 28 For a review on allylic A1 , 3 strain, see: Hoffmann RW. Chem. Rev. 1989; 89: 1841
For reviews, see:
For selected recent contributions, see:
Alkynes were preferentially activated in the gold-catalyzed cycloisomerization of 1,5-cyclopropene-ynes, having a terminal, an aryl- or an alkyl-substituted triple bond tethered to the C3 atom of the cyclopropene, see: