Subscribe to RSS
DOI: 10.1055/s-0035-1569998
Perpetual and Virtual Patients for Cardiorespiratory Physiological Studies
Publication History
20 September 2015
08 October 2015
Publication Date:
15 December 2015 (online)
Abstract
As a result of innovations in informatics over the last decades, physiologic models elaborated in the second half of the 20th century could be transformed into specific virtual patients called computational models. These models, developed initially for teaching purposes, are of great potential interest in responding to current concerns about improving patient care and safety. However, even if there are obvious advantages to using computational models in cardiorespiratory management, major concerns persist as to their reliability and their ability to recreate real patient physiologic evolution over time. Once developed, these models require complex validation and configuration phases prior to implementation in daily practice. This article focuses on the development of computational models, and reviews the methodologies to clinically validate the models including specific patient databases (perpetual patients) and the use in clinical practice including very high fidelity simulation.
-
References
- 1 Aerts JM, Haddad WM, An G, Vodovotz Y. From data patterns to mechanistic models in acute critical illness. J Crit Care 2014; 29 (4) 604-610
- 2 Sperl-Hillen J, O'Connor PJ, Ekstrom HL , et al. Educating resident physicians using virtual case-based simulation improves diabetes management: a randomized controlled trial. Acad Med 2014; 89 (12) 1664-1673
- 3 Cook DA, Erwin PJ, Triola MM. Computerized virtual patients in health professions education: a systematic review and meta-analysis. Acad Med 2010; 85 (10) 1589-1602
- 4 Consorti F, Mancuso R, Nocioni M, Piccolo A. Efficacy of virtual patients in medical education: a meta-analysis of randomized studies. Comput Educ 2012; 59: 1001-1008
- 5 Lopreiato JO, Sawyer T. Simulation-based medical education in pediatrics. Acad Pediatr 2015; 15 (2) 134-142
- 6 Wysocki M, Jouvet P, Jaber S. Closed loop mechanical ventilation. J Clin Monit Comput 2014; 28 (1) 49-56
- 7 Tegtmeyer K, Ibsen L, Goldstein B. Computer-assisted learning in critical care: from ENIAC to HAL. Crit Care Med 2001; 29 (8, Suppl): N177-N182
- 8 Flechelles O, Ho A, Hernert P , et al. Simulations for mechanical ventilation in children: review and future prospects. Crit Care Res Pract 2013; 2013: 943281
- 9 Jouvet PA, Payen V, Gauvin F, Emeriaud G, Lacroix J. Weaning children from mechanical ventilation with a computer-driven protocol: a pilot trial. Intensive Care Med 2013; 39 (5) 919-925
- 10 Hester RL, Brown AJ, Husband L , et al. HumMod: a modeling environment for the simulation of integrative human physiology. Front Phys 2011; 2: 12
- 11 Hardman JG, Wills JS. The development of hypoxaemia during apnoea in children: a computational modelling investigation. Br J Anaesth 2006; 97 (4) 564-570
- 12 Hardman JG, Bedforth NM, Ahmed AB, Mahajan RP, Aitkenhead AR. A physiology simulator: validation of its respiratory components and its ability to predict the patient's response to changes in mechanical ventilation. Br J Anaesth 1998; 81 (3) 327-332
- 13 Wang A, Mahfouf M, Mills GH , et al. Intelligent model-based advisory system for the management of ventilated intensive care patients: hybrid blood gas patient model. Comput Methods Programs Biomed 2010; 99 (2) 195-207
- 14 Heldt T, Mukkamala R, Moody GB, Mark RG. CVSim: an open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol Ther J 2010; 3: 45-54
- 15 Das A, Gao Z, Menon PP, Hardman JG, Bates DG. A systems engineering approach to validation of a pulmonary physiology simulator for clinical applications. J R Soc Interface 2011; 8 (54) 44-55
- 16 Hester RL, Iliescu R, Summers R, Coleman TG. Systems biology and integrative physiological modelling. J Physiol 2011; 589 (Pt 5) 1053-1060
- 17 Wilson AJ, Murphy CM, Brook BS, Breen D, Miles AW, Tilley DG. A computer model of the artificially ventilated human respiratory system in adult intensive care. Med Eng Phys 2009; 31 (9) 1118-1133
- 18 Summers RL, Ward KR, Witten T , et al. Validation of a computational platform for the analysis of the physiologic mechanisms of a human experimental model of hemorrhage. Resuscitation 2009; 80 (12) 1405-1410
- 19 Kononowicz AA, Narracott AJ, Manini S , et al. A framework for different levels of integration of computational models into web-based virtual patients. J Med Internet Res 2014; 16 (1) e23
- 20 Ellaway R, Poulton T, Fors U, McGee JB, Albright S. Building a virtual patient commons. Med Teach 2008; 30 (2) 170-174
- 21 Kononowicz AA, Zary N, Edelbring S, Corral J, Hege I. Virtual patients—what are we talking about? A framework to classify the meanings of the term in healthcare education. BMC Med Educ 2015; 15: 11
- 22 Bateman J, Allen ME, Kidd J, Parsons N, Davies D. Virtual patients design and its effect on clinical reasoning and student experience: a protocol for a randomised factorial multi-centre study. BMC Med Educ 2012; 12: 62
- 23 http://www.laerdal.com/us/doc/367/History . Accessed May 25, 2015
- 24 Association of American Medical Colleges. Effective use of educational technology in medical education. Colloquium on educational technology: Recommendations and guidelines for medical educators. Association of American Medical Colleges, 2007: 1-19
- 25 Cendan J, Lok B. The use of virtual patients in medical school curricula. Adv Physiol Educ 2012; 36 (1) 48-53
- 26 Kleinert R, Wahba R, Chang DH, Plum P, Hölscher AH, Stippel DL. 3D immersive patient simulators and their impact on learning success: a thematic review. J Med Internet Res 2015; 17 (4) e91
- 27 Cook DA, Triola MM. Virtual patients: a critical literature review and proposed next steps. Med Educ 2009; 43 (4) 303-311
- 28 Bloice MD, Simonic KM, Holzinger A. On the usage of health records for the design of Virtual Patients: a systematic review. BMC Med Inform Decis Mak 2013; 13: 103
- 29 Poulton T, Balasubramaniam C. Virtual patients: a year of change. Med Teach 2011; 33 (11) 933-937
- 30 Posel N, Mcgee JB, Fleiszer DM. Twelve tips to support the development of clinical reasoning skills using virtual patient cases. Med Teach 2015; 37 (9) 813-818
- 31 Botezatu M, Hult H, Tessma MK, Fors U. Virtual patient simulation: knowledge gain or knowledge loss?. Med Teach 2010; 32 (7) 562-568
- 32 McCarthy D, O'Gorman C, Gormley GJ. Developing virtual patients for medical microbiology education. Trends Microbiol 2013; 21 (12) 613-615
- 33 Stevens A, Hernandez J, Johnsen K , et al. The use of virtual patients to teach medical students history taking and communication skills. Am J Surg 2006; 191 (6) 806-811
- 34 Huang G, Reynolds R, Candler C. Virtual patient simulation at US and Canadian medical schools. Acad Med 2007; 82 (5) 446-451
- 35 Fléchelles O, Hernert P, Zaglam N, Cheriet F, Emeriaud G, Jouvet P. Validation of a pediatric cardio-respiratory simulator: SimulResp. The 4th congress of the European Academy of Pediatric Societies, Istanbul, October 2012. Arch Dis Child 2012; 97 (Suppl. 02) 1-58
- 36 Hardman JG, Wills JS, Aitkenhead AR. Investigating hypoxemia during apnea: validation of a set of physiological models. Anesth Analg 2000; 90 (3) 614-618
- 37 Summers RL. Computer simulation studies and the scientific method. J Appl Anim Welf Sci 1998; 1 (2) 119-131
- 38 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1 (8476) 307-310
- 39 Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 2003; 22 (1) 85-93
- 40 O'Connor DP, Mahar MT, Laughlin MS, Jackson AS. The Bland-Altman method should not be used in regression cross-validation studies. Res Q Exerc Sport 2011; 82 (4) 610-616
- 41 Rees SE. The Intelligent Ventilator (INVENT) project: the role of mathematical models in translating physiological knowledge into clinical practice. Comput Methods Programs Biomed 2011; 104 (Suppl. 01) S1-S29
- 42 Karbing DS, Kjærgaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys 2011; 33 (2) 240-248
- 43 Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 1999; 15 (2) 85-91
- 44 Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm 1992; 20 (1) 63-94
- 45 Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth 2003; 90 (2) 132-141
- 46 Wieland A, Wallenburg CM. Dealing with supply chain risks: Linking risk management practices and strategies to performance. Int J Phys Distrib Logist Manag 2012; 42 (10) 887-905
- 47 Yang Y. Consistency of cross validation for comparing regression procedures. Ann Stat 2007; 35 (6) 2450-2473
- 48 Zhang Y, Yang Y. Cross-validation for selecting a model selection procedure. J Econom 2015; 187 (1) 95-112
- 49 Picard R, Cook D. Cross-validation of regression models. J Am Stat Assoc 1984; 79 (387) 575-583
- 50 Saeed M, Lieu C, Raber G, Mark RG. MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring. Comput Cardiol 2002; 29: 641-644
- 51 Goldberger AL, Amaral LAN, Glass L , et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000; 101 (23) E215-E220
- 52 Kokkinaki A, Chouvarda I, Maglaveras N. Searching biosignal databases by content and context: Research Oriented Integration System for ECG Signals (ROISES). Comput Methods Programs Biomed 2012; 108 (2) 453-466
- 53 Korhonen I, van Gils M, Gade J. The challenges in creating critical-care databases. IEEE Eng Med Biol Mag 2001; 20 (3) 58-62
- 54 Burykin A, Peck T, Krejci V, Vannucci A, Kangrga I, Buchman TG. Toward optimal display of physiologic status in critical care: I. Recreating bedside displays from archived physiologic data. J Crit Care 2011; 26 (1) 105.e1-105.e9
- 55 Hanson III CW, Marshall BE. Artificial intelligence applications in the intensive care unit. Crit Care Med 2001; 29 (2) 427-435
- 56 Mathews SC, Pronovost PJ. The need for systems integration in health care. JAMA 2011; 305 (9) 934-935
- 57 Moody GB, Mark RG, Goldberger AL. PhysioNet: physiologic signals, time series and related open source software for basic, clinical, and applied research. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 8327-8330
- 58 Saeed M, Villarroel M, Reisner AT , et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. Crit Care Med 2011; 39 (5) 952-960
- 59 Stow PJ, Hart GK, Higlett T , et al; ANZICS Database Management Committee. Development and implementation of a high-quality clinical database: the Australian and New Zealand Intensive Care Society Adult Patient Database. J Crit Care 2006; 21 (2) 133-141
- 60 Codd EF. A relational model of data for large shared data banks. Comm ACM 1970; 13 (6) 377-387
- 61 Berrington J. Databases. Anaesth Intensive Care 2014; 15 (2) 59-61
- 62 Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 2001; 20 (3) 45-50
- 63 Kropyvnytskyy I, Saunders F, Schierek P, Pols M. A computer system for continuous long-term recording, processing, and analysis of physiological data of brain injured patients in ICU settings. Brain Inj 2001; 15 (7) 577-583
- 64 Goldstein B, McNames J, McDonald BA , et al. Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit. Crit Care Med 2003; 31 (2) 433-441
- 65 Moody GB, Mark RG, Goldberger AL. PhysioNet: a Web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 2001; 20 (3) 70-75
- 66 Burykin A, Peck T, Buchman TG. Using “off-the-shelf” tools for terabyte-scale waveform recording in intensive care: computer system design, database description and lessons learned. Comput Methods Programs Biomed 2011; 103 (3) 151-160
- 67 Costa M, Moody GB, Henry I, Goldberger AL. PhysioNet: an NIH research resource for complex signals. J Electrocardiol 2003; 36 (Suppl): 139-144
- 68 Celi LA, Csete M, Stone D. Optimal data systems: the future of clinical predictions and decision support. Curr Opin Crit Care 2014; 20 (5) 573-580
- 69 Black N. High-quality clinical databases: breaking down barriers. Lancet 1999; 353 (9160) 1205-1206
- 70 Scott DJ, Lee J, Silva I , et al. Accessing the public MIMIC-II intensive care relational database for clinical research. BMC Med Inform Decis Mak 2013; 13 (1) 9
- 71 Liu B, Qiu P, Chen H, Li Q. Comparison of simultaneous invasive and non-invasive measurements of blood pressure based upon MIMIC II database. Artery Res 2014; 8 (4) 209-213
- 72 Mikhno A, Ennett CM. Prediction of extubation failure for neonates with respiratory distress syndrome using the MIMIC-II clinical database. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 5094-5097
- 73 Zhang Z, Xu X, Ni H, Deng H. Predictive value of ionized calcium in critically ill patients: an analysis of a large clinical database MIMIC II. PLoS ONE 2014; 9 (4) e95204
- 74 Brossier D, Eltaani R, Sauthier M, Baudin F, Emeriaud G, Jouvet P. Elaboration d'une base de données électronique en réanimation pédiatrique en vue d'une validation d'un patient virtuel. Reanimation 2014; 24: S194
- 75 Jouvet P, Farges C, Hatzakis G , et al. Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. Pediatr Crit Care Med 2007; 8 (5) 425-432
- 76 Khemani RG, Sward K, Morris A, Dean JM, Newth CJ ; NICHD Collaborative Pediatric Critical Care Research Network (CPCCRN). Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol. Intensive Care Med 2011; 37 (11) 1840-1848