Subscribe to RSS
DOI: 10.1055/s-0040-1705975
Peroxide-Mediated Oxidative Radical Cyclization to the Quinazolinone System: Efficient Syntheses of Deoxyvasicinone, Mackinazolinone and (±)-Leucomidine C
Financial support from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica-Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (PAPIIT-DGAPA) (Project IN208719) is gratefully acknowledged. JG-R thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a Ph.D. scholarship (No. 577203).
Abstract
An efficient protocol for obtaining fused quinazolinones through an oxidative free-radical cyclization under metal- and tin-free conditions is described. The oxidative cyclization of various N-3-ω-iodoalkyl derivatives to provide tricyclic systems using dicumyl peroxide as the sole reagent is studied. The method then is employed for the syntheses of 5-, 6-, and 7-membered fused quinazolinone analogues, including the natural products deoxyvasicinone and mackinazolinone. A xanthate-based oxidative radical cascade addition/cyclization process that allows the production of new menthol- and testosterone-quinazolinone conjugates, as well as the first total synthesis of leucomidine C, are also reported.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705975.
- Supporting Information
Publication History
Received: 28 August 2020
Accepted after revision: 15 October 2020
Article published online:
19 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 2a Han YY, Jiang H, Wang RZ, Yu SY. J. Org. Chem. 2016; 81: 7276
- 2b Tiwary BK, Pradhan K, Nanda AK, Chakraborty R. J. Chem. Biol. Ther. 2016; 1: 104
- 2c Selvam TP, Kumar PV. Res. Pharm. 2011; 1: 1
- 3a Amin AH, Mehta DR. Nature 1959; 184: 1317
- 3b Mehta DR, Naravane JS, Desai RM. J. Org. Chem. 1963; 28: 445
- 3c Ghosal S, Chauhan PB. P. S, Mehta R. Phytochemistry 1975; 14: 830
- 4a Liljegren DR. Phytochemistry 1968; 7: 1299
- 4b Al-Shamma A, Drake S, Flynn DL, Mitscher LA, Park YH, Rao GS. R, Wu ST.-S. J. Nat. Prod. 1981; 44: 745
- 4c Johns SR, Lamberton JA. Chem. Commun. 1965; 12: 267a
- 5 Motegi M, Nugroho AE, Hirasawa Y, Arai T, Hadi AH. A, Morita H. Tetrahedron Lett. 2012; 53: 1227
- 6a Rohokale RS, Kshirsagar UA. Synthesis 2016; 48: 1253
- 6b Khan I, Zaib S, Batool S, Abbas N, Ashraf Z, Iqbal J, Saeed A. Bioorg. Med. Chem. 2016; 24: 2361
- 7a Larraufie MH, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L. J. Am. Chem. Soc. 2010; 132: 4381
- 7b Larraufie MH, Malacria M, Courillon C, Ollivier C, Fensterbank L, Lacôte E. Tetrahedron 2013; 69: 7699
- 7c Xu G, Tong C, Cui S, Dai L. Org. Biomol. Chem. 2018; 16: 5899
- 7d Baguia H, Deldaele C, Romero E, Michelet B, Evano G. Synthesis 2018; 50: 3022
- 8 For a review, see: Ghosh P, Ganguly B, Das S. Org. Biomol. Chem. 2020; 18: 4497
- 9 Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
- 10 Bowman WR, Elsegood MR. J, Stein T, Weaver GW. Org. Biomol. Chem. 2007; 5: 103
- 11 Mahajan PS, Mhaske SB. Org. Lett. 2018; 20: 2092
- 12 Huang HM, Adams RW, Procter DJ. Chem. Commun. 2018; 54: 10160
- 13 Menes M, Martínez R, Cruz R, Muchowski JM, Osornio YM, Miranda LD. J. Org. Chem. 2004; 69: 4001
- 14a Zard SZ. Acc. Chem. Res. 2018; 51: 1722
- 14b Blechy A, Zard SZ. Org. Lett. 2009; 11: 2800
- 14c Huang Q, Zard SZ. Org. Lett. 2018; 20: 5304
- 14d Paleo E, Osornio YM, Miranda LD. Org. Biomol. Chem. 2011; 9: 361
- 14e Osornio YM, Miranda LD. Rev. Soc. Quím. Méx. 2004; 48: 288
- 15 Quiclet-Sire B, Zard SZ. Synlett 2016; 27: 680
- 16 López P, Díaz JE, Loaiza AE, Miranda LD. Tetrahedron 2018; 74: 5494
- 17 Banwell MG, Edwards AJ, Jolliffe KA, Smith JA, Hamel E, Verdier P. Org. Biomol. Chem. 2003; 1: 296
- 18 Quiclet-Sire B, Zard SZ. Sci. China Chem. 2019; 62: 1450
For reviews, see:
For reviews, see:
For selected recent publications, see:
For selected examples, see: